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My first introduction to Bernard’s 
work occurred when I learned about 
the Julia-Zee dyon while working on 
magnetic monopoles and fermions, 
inspired by the work of Callan and 
Rubakov. It was only later    that I 
learned to appreciate his work on 
infinite-dimensional symmetries, 
supergravities and exceptional 
things.  

Today I want to discuss two related topics that I hope will appeal to 
his love of exceptional things:

2.  A connection between superconformal symmetry, quantum 
error correction, and sporadic group symmetry (with G. Moore).

1. The existence of sporadic group symmetry in special 2d CFTs 
(with J-B Bae, K. Lee, S. Lee and B. Rayhaun)

This is probably wrong.  Cremmer&Julia->Gell-Mann->Ramond
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20 of the 26 sporadic groups are embedded as quotients of subgroups 
of the Monster group. 6 (ON, Ru, Ly, J1, J3, J4) are not. 
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For the sporadic groups there is evidence that the right 
structures are those of 2d Conformal Field Theories (CFTs) or 
VOAs with the group preserving the algebraic structure of the 
operator product expansion. 

Groups can of course be studied abstractly, but in physics (and often 
in math) we would like to know if they acts as the symmetry or 
automorphism group of some object, preserving some structure. 



We know that there is a c=24 CFT with Monster symmetry that 
explains the original moonshine connection between the Monster 
and modular forms. It is a Z2 orbifold of the Leech lattice CFT/VOA.

TrqL0�c/24 = J(⌧) = q�1 + (196883 + 1)q + · · ·

Are the sporadic groups appearing in M also the symmetry groups of 
CFTs embedded in the Monster CFT?

A key observation needed to answer this question was made by 
Zamolodchikov and generalized by Dixon and JH, Dong-Mason-Zhu, 
Dong-Li-Mason-Norton. 

A CFT always has a stress tensor. If it also has primary dimension 
(2,0) fields it can have other stress tensors (conformal vectors) with 
smaller central charge.  For example, with a single (2,0) primary we 
have the OPEs
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One finds two solutions and this leads to a decomposition 
into sub CFTs T (z) = t+(z) + t�(z)

This is similar to the GKO coset construction but does not 
involve any currents (dimension (1,0) operators). 
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Example 1:

Example 2:

c=1 CFT on a circle of radius R=1
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c=1/2 stress tensors 
(conformal vectors)

Lattice CFT/VOA with lattice          , R a root lattice 
of type                              .  Because of rescaling 
the roots now correspond to dimension 2 
operators.
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Note that       is invariant under X -> -X.  And that the Leech 
lattice (with minimal length squared 4) contains many sub 
lattices of the form          . Therefore we can find many 
subCFTs of the Monster CFT and “deconstruct” it into CFTs 
with smaller central charge. 

p
2R

'

The symmetries of these subCFTs have an interesting 
relation to the Monster and its subgroups. The simplest 
example is due to G. Höhn. 

24 =
1

2
+ 23

1

2

Ising CFT with 
Z2 symmetry

CFT with the Baby Monster 
=Centralizer(Z2) as its symmetry group

W W̃

More complicated examples have been studied in the math 
literature by Lam, Yamada, Yamauchi, Dong, Kitazume, 
Miyamoto, …



Elements in the 2A class of M                   Symmetry of Ising  Model ! Z2

Products of 2A elements are elements of one of the 9A classes 
1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A and 1,2,2,3,3,4,4,5,6 and are the 
Coxeter labels of the extended E8 Dynkin diagram (McKay)

1A 2A 3A 4A 5A 6A 4B 2B

3C

It is then natural to ask whether the pairs of Ising models 
generate a sub-CFT       of the Monster CFT, what it is, what is 
left when this sub-CFT is removed       , and what its symmetry 
group is. This produces a set of CFTs with sporadic symmetry 
groups.

↵0 + 2↵1 + 3↵2 + 4↵3 + 5↵4 + 6↵3 + 4↵6 + 2↵7 + 3↵8 = 0

(W̃)

(W)



B 2E6(2) Fi23 Co3? HN F4(2)
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In this way we can associated the nodes of the extended E8 
Dynkin diagram to 7 sporadic groups and two groups of Lie type.



The most intricate and novel part of our analysis is the 
determination of the characters of these CFTs with sporadic 
group symmetry.  We use a number of techniques (Hecke 
operators for vector-valued modular forms, Modular Linear 
Differential Equations,  and products of the above with 
minimal model characters to produce characters of the 
“small” and “large” sub CFTs with characters            ,  Xi(q)�i(q)

X

i

�i(q)Xi(q) = J(q) = q�1 + 196884q + · · ·

I will spare you most of the gory details and just present 
some results for one example, the 3C example with 
Thompson group symmetry. 



The product of the two Z_2 elements in the two Ising theories is 
order 3 and is in the 3C class of the Monster. They generate a 
c=1/2+11/12 CFT which can be viewed as the tensor product of 
the Ising model (m=3 minimal model) and the m=8 minimal 
model. The characters are products of these minimal model 
characters and have an alternate representation in terms of Z_9 
parafermion characters.  The        CFT has Thompson sporadic 
group symmetry with characters:

W̃

Are 
dimen
sions 
of Th 
irreps



This gives a fairly uniform construction of CFTs with symmetry 
groups that are sporadic groups (or minor extensions of 
sporadic group) for 7 of the sporadic group in the Monster. 
What about the others?

We have partial results using other products of minimal 
models and parafermions for several other groups but they 
seem to require further deconstruction before we have the 
right CFT “on the nose.” These include Held, Hall-Janko, 
Suzuki and a couple of the Mathieu groups. 

It is notable that the characters we find for Th and for Mathieu 
do not seem to be related to the weight 1/2 (mock) modular 
forms that exhibit moonshine for these groups in the work of 
Rayhaun & JH and Eguchi, Ooguri and Tachikawa.



It now seems plausible that all sporadic groups appearing as 
sub-quotients of the Monster can be viewed as the symmetry 
groups of certain special CFTs although quite a bit more work 
is required to see if this is really the case. 

It is not clear if the remaining 6 sporadic groups can be fit into 
this framework, but some of them have recently been 
associated with modular forms/moonshine, so even they may 
eventually be understood using something like 2d CFT.  



I’d like to change to change topics somewhat and briefly 
discussion a novel aspect of some special CFTs with 
sporadic symmetry groups. 

Some of these CFTs are actually superconformal, and the 
superconformal generator and the symmetries preserving it 
are connected to quantum error correcting codes.  

I will discuss one example, but we (G. Moore and I) have 
analyzed two others and hope the considerations may be 
more general.  

Example: A c=6 SCFT describing a K3 sigma model with 
symmetry group                  (Gaberdiel, Taormina, Volpato, 
Wendland) 

Z8
2 : M20

TD4/Z2 SO(4)3 = SU(2)6



Recall the N=1 superconformal algebra expressed in terms 
of  the OPE:  

G(z) is a dimension 3/2 operator.  It can be constructed as a 
very special sum of tensor products of operators with 
smaller conformal weight: 

3

2
= 6⇥ 1

4



The construction is related to both classical error correcting 
codes and quantum error correcting codes.   

A classical error correcting code in a linear subspace of the 
tensor product of n copies of the finite field with              
elements,              . 

q = pn

C ⇢ Fn
q

Physicists mainly encounter       with p prime, integers mod 
p.  We need  

Fp

F4

F4 = {0, 1,!, !̄} 0 is additive identity, 1 is multiplicative identity 
and the addition and multiplication rules are



Consider the GTVW  K3 sigma model. It has a description in 
terms of a (subspace) of the tensor product of 6 level one 
affine SU(2) theories,              . This theory has a primary 
operator of dimension h=1/4 which occurs with multiplicity 2 
and creates states in the 2-dimensional irrep of SU(2).   

e
ip
2
✏X(z), ✏ = ±1

The product of six such operators has dimension 6/4=3/2 
and can be labelled by   

We also use a notation where we list the slots with entry -1 in 
square brackets, so   

\SU(2)1

(✏1, ✏2, · · · ✏6) ⇠ |✏1i ⌦ · · ·⌦ |✏6i 2 (C2)6



Then a N=1 superconformal generator is given by

Where does this complicated looking thing come from and 
why does it have this form?  The answer involves error 
correcting codes, both classical and quantum.



The hexacode      is a classical error correcting code, a rank 
3 subspace of           .  It can be specified in several ways, 
perhaps simplest is to just give generators:   

(F4)
6

b1 = (1, 0, 0, 1, !̄,!)

b2 = (0, 1, 0, 1,!, !̄)

b3 = (0, 0, 1, 1, 1, 1)

We also need a group homomorphism 
from       , which is       considered as an 
Abelian group with + group law, to the 
quaternion subgroup of SU(2).

F+
4 F4

This extends in an obvious way to a 
map from the hexacode to SU(2)^6 and  
one finds the surprising result that

H6

h(w1)h(w2) = h(w1 + w2), w1, w2 2 H6



It follows from this  and properties of the hexacode that
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1

64

X

w2H6

h(w)

is a rank one projection operator and one checks that the 
N=1 superconformal generator is given by

 = 16P |++++++i

We are using the earlier correspondence between dimension 
3/2=6x1/4 operators and vectors in           .  In the language of 
quantum computation,      is a state in a 6-qubit system, and 
one with very special properties.  It is a maximally entangled 
state and closely related to the smallest quantum error 
correcting code capable of correcting an arbitrary one qubit 
error.

(C2)6

 



|1Li = X⌦5|0Li

X =

✓
0 1
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◆

Entangled quantum states carry information and can be used 
to encode quantum information in a way that protects it 
again errors. The smallest code that can detect and correct a 
single qubit error without destroying quantum information 
works by embedding a single qubit state into a 5 qubit state:

↵|0i+ �|1i ! ↵|0Li+ �|1Li

where

If we add one more qubit we can construct a maximally 
entangled 6 qubit state  in that 

 the trace over any three qubits gives the density matrix                  ⇢(3) =
I

8
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It turns out that this maximally entangled state, and the state 
describing the N=1 superconformal generator in the GTVW 
model are unitarily equivalent  (+,-) -> (0,1) (T. Maniero).

I have glossed over many interesting details: 

1. The error correcting property is linked to the cancellation 
of certain terms in the OPE of general dimension 3/2 
operators required to have superconformal symmetry.  

2. The symmetry group preserving the superconformal 
symmetry is linked to the holomorph of the hexacode, 
Holomorph(G)=                    .G : Aut(G)

3. The 2^8:M20 symmetry preserving (4,4) superconformal 
symmetry arises as a subgroup of Hol(G).



A similar construction can be used to construct the 
superconformal generator in a c=12 theory with Conway 
symmetry studied by Duncan and constructed out of 24 
free fermions.  Let       be the fermion zero modes in the 
Ramond sector. The generate a Clifford algebra. Let 
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1 · · · �w24

24

There is a non-trivial cocycle                                            but 
it is trivializable when restricted to the Golay code 

�w1�w2 = ✏(w1, w2)�w1+w2

Let        be its trivialization. Then                                

is a rank one projection operator and can be used to 
construct the superconformal generator, now of dimension 
3/2=24/16.
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24
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24



This connection between superconformal generators and 
codes probably extends to other interesting SCFTs with 
sporadic symmetry groups such as the c=24 Monster CFT.

I would like to thank Bernard for his far-reaching insights 
into exceptional structures in physics and mathematics and 
wish him many more exciting discoveries in the future. 



Thank You 
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