Sporadic Groups and Conformal Field Theories

Jeff Harvey
University of Chicago

Exceptional Dimensions
A Conference in Honour of Bernard Julia 16-17 December 2019

My first introduction to Bernard's work occurred when I learned about the Julia-Zee dyon while working on magnetic monopoles and fermions, inspired by the work of Callan and Rubakov. It was only later \star that I learned to appreciate his work on infinite-dimensional symmetries, supergravities and exceptional things.

Today I want to discuss two related topics that I hope will appeal to his love of exceptional things:

1. The existence of sporadic group symmetry in special 2d CFTs (with J-B Bae, K. Lee, S. Lee and B. Rayhaun)
2. A connection between superconformal symmetry, quantum error correction, and sporadic group symmetry (with G. Moore).

This is probably wrong. Cremmer\&Julia->Gell-Mann->Ramond

The Periodic Table Of Finite Simple Groups

20 of the 26 sporadic groups are embedded as quotients of subgroups of the Monster group. 6 (ON, Ru, Ly, J1, J3, J4) are not.

Groups can of course be studied abstractly, but in physics (and often in math) we would like to know if they acts as the symmetry or automorphism group of some object, preserving some structure.

S_{4}

A_{5}

A_{5}

For the sporadic groups there is evidence that the right structures are those of 2d Conformal Field Theories (CFTs) or VOAs with the group preserving the algebraic structure of the operator product expansion.

We know that there is a c=24 CFT with Monster symmetry that explains the original moonshine connection between the Monster and modular forms. It is a Z2 orbifold of the Leech lattice CFT/VOA.

$$
\operatorname{Tr} q^{L_{0}-c / 24}=J(\tau)=q^{-1}+(196883+1) q+\cdots
$$

Are the sporadic groups appearing in \mathbf{M} also the symmetry groups of CFTs embedded in the Monster CFT?

A key observation needed to answer this question was made by Zamolodchikov and generalized by Dixon and JH, Dong-Mason-Zhu, Dong-Li-Mason-Norton.

A CFT always has a stress tensor. If it also has primary dimension $(2,0)$ fields it can have other stress tensors (conformal vectors) with smaller central charge. For example, with a single $(2,0)$ primary we have the OPEs

$$
\begin{aligned}
T(z) T(w) & \sim \frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w} \\
T(z) \varphi(w) & \sim \frac{2 \varphi(w)}{(z-w)^{2}}+\frac{\partial \varphi(w)}{z-w} \\
\varphi(z) \varphi(w) & \sim \frac{1}{(z-w)^{4}}+\frac{4 T(w) / c+b \varphi(w)}{(z-w)^{2}}+\frac{\partial(4 T(w) / c+b \varphi(w)) / 2}{z-w} .
\end{aligned}
$$

Write $t(z)=\alpha T(z)+\beta \varphi(z)$ and demand that
$t(z) t(w) \sim \frac{c_{t} / 2}{(z-w)^{4}}+\frac{2 t(w)}{(z-w)^{2}}+\cdots \quad$ solve for $\quad \alpha, \beta$
One finds two solutions and this leads to a decomposition into sub CFTs

$$
T(z)=t_{+}(z)+t_{-}(z) \quad c=c_{+}+c_{-}
$$

This is similar to the GKO coset construction but does not involve any currents (dimension $(1,0)$ operators).

Example 1: $\quad \mathrm{c}=1 \mathrm{CFT}$ on a circle of radius $\mathrm{R}=1$

$$
\varphi(z)=\frac{1}{\sqrt{2}}\left(e^{2 i X(z)}+e^{-2 i X(z)}\right)
$$

$$
t_{ \pm}=\frac{1}{2}\left(-\frac{1}{2} \partial X \partial X \pm \frac{1}{\sqrt{2}} \varphi\right) \quad c=1 / 2 \text { stress tensors }
$$

(conformal vectors)

Example 2: Lattice CFT/NOA with lattice $\sqrt{2} R$, \mathbf{R} a root lattice of type $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$. Because of rescaling the roots now correspond to dimension 2 operators.

There is a linear combination of \mathbf{T} and φ which is a conformal vector with

$$
\varphi=\frac{1}{2 h+2} \sum_{\alpha \in \Phi+(R)}\left(e^{\sqrt{2} \alpha}+e^{-\sqrt{2} \alpha}\right)
$$

$$
\begin{array}{lll}
R & c & \\
A_{n} & \frac{2 n}{n+3} & \mathbb{Z}_{n+1} p f \\
D_{n} & 1 & \\
E_{6} & 6 / 7 & \\
E_{7} & 7 / 10 & \text { minimal } \\
E_{8} & 1 / 2 & \text { models }
\end{array}
$$

Note that φ is invariant under \mathbf{X}-> -X. And that the Leech lattice (with minimal length squared 4) contains many sub lattices of the form $\sqrt{2} R$. Therefore we can find many subCFTs of the Monster CFT and "deconstruct" it into CFTs with smaller central charge.

The symmetries of these subCFTs have an interesting relation to the Monster and its subgroups. The simplest example is due to G. Höhn.

More complicated examples have been studied in the math literature by Lam, Yamada, Yamauchi, Dong, Kitazume, Miyamoto, ...

Elements in the 2A class of $\mathbf{M} \longleftrightarrow \mathbb{Z}_{2} \quad$ Symmetry of Ising Model

Products of 2A elements are elements of one of the 9A classes $1 \mathrm{~A}, 2 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{~A}, 3 \mathrm{C}, 4 \mathrm{~A}, 4 \mathrm{~B}, 5 \mathrm{~A}, 6 \mathrm{~A}$ and $1,2,2,3,3,4,4,5,6$ and are the Coxeter labels of the extended E8 Dynkin diagram (McKay)

It is then natural to ask whether the pairs of Ising models generate a sub-CFT (\mathcal{W}) of the Monster CFT, what it is, what is left when this sub-CFT is removed $(\tilde{\mathcal{W}})$, and what its symmetry group is. This produces a set of CFTs with sporadic symmetry groups.

$$
\mathbb{B}-{ }^{2} E_{6}(2)-\mathrm{Fi}_{23}-\mathrm{Co}_{3} ?-\mathrm{HN}-\mathrm{F}_{4}(2)-\mathrm{Fi}_{22}-\mathrm{Co}_{2}
$$

In this way we can associated the nodes of the extended E8 Dynkin diagram to 7 sporadic groups and two groups of Lie type.

\mathcal{W}	$\widetilde{\mathcal{W}}$	$\operatorname{Aut}(\widetilde{\mathcal{W}})$	$\operatorname{Inn}(\widetilde{\mathcal{W}})$	$c_{\tilde{t}}$	subalgebra of
trivial	V^{\natural}	\mathbb{M}	\mathbb{M}	24	V^{\natural}
$\mathcal{W}_{1 \mathrm{~A}} \cong L\left(\frac{1}{2}, 0\right)$	$V \mathbb{B}^{\natural}$	\mathbb{B}	\mathbb{B}	$23^{1} / 2$	V^{\natural}
$P(3)$	$V F_{24}^{\natural}$	$F i_{24}$	$F i_{24}^{\prime}$	$23^{1} / 5$	V^{\natural}
$\mathcal{W}_{2 \mathrm{~A}}$	$\widetilde{\mathcal{W}}_{2 \mathrm{~A}}$	${ }^{2} E_{6}(2) .2$		$22^{4} / 5$	$V \mathbb{B}^{\natural}, V^{\natural}$
$\mathcal{W}_{3 \mathrm{~A}}$	V_{23}^{\natural}	$F i_{23}$	$F i_{23}$	$22^{12} / 35$	$V F_{24}^{\natural}, V \mathbb{B}^{\natural}, V^{\natural}$
$\mathcal{W}_{4 \mathrm{~A}}$	$\widetilde{\mathcal{W}}_{4 \mathrm{~A}}$			22	
$\mathcal{W}_{5 \mathrm{~A}}$	$V N^{\natural}$	$H N .2$	$H N$	$21^{5} / 7$	$V \mathbb{B}^{\natural}, V^{\natural}$
$\mathcal{W}_{6 \mathrm{~A}}$	V_{22}^{\natural}	$F i_{22} .2$	$F i_{22}$	$21^{9} / 20$	$V F_{23}^{\natural}, V F_{24}^{\natural}, V \mathbb{B}^{\natural}, V^{\natural}$
$\mathcal{W}_{4 \mathrm{~B}}$	$\widetilde{\mathcal{W}}_{4 \mathrm{~B}}$	$F_{4}(2) .2$		$22^{1} / 10$	$\widetilde{\mathcal{W}}_{2 \mathrm{~A}}, V \mathbb{B}^{\natural}, V^{\natural}$
$\mathcal{W}_{2 \mathrm{~B}} \cong L\left(\frac{1}{2}, 0\right)^{\otimes 2}$	$\widetilde{\mathcal{W}}_{2 \mathrm{~B}}$	$2^{22} . C o_{2}$	$2^{22} . C C_{2}$	22	$V \mathbb{B}^{\natural}, V^{\natural}$
$\mathcal{W}_{3 \mathrm{C}}$	$V T^{\natural}$	$T h$	$T h$	$22^{6 / 11}$	$V \mathbb{B}^{\natural}, V^{\natural}$

The most intricate and novel part of our analysis is the determination of the characters of these CFTs with sporadic group symmetry. We use a number of techniques (Hecke operators for vector-valued modular forms, Modular Linear Differential Equations, and products of the above with minimal model characters to produce characters of the "small" and "large" sub CFTs with characters $\chi_{i}(q), X_{i}(q)$

$$
\sum_{i} \chi_{i}(q) X_{i}(q)=J(q)=q^{-1}+196884 q+\cdots
$$

I will spare you most of the gory details and just present some results for one example, the 3C example with Thompson group symmetry.

The product of the two Z_2 elements in the two Ising theories is order 3 and is in the 3C class of the Monster. They generate a $\mathrm{c}=1 / 2+11 / 12 \mathrm{CFT}$ which can be viewed as the tensor product of the Ising model ($\mathrm{m}=3$ minimal model) and the $\mathrm{m}=8 \mathrm{minimal}$ model. The characters are products of these minimal model characters and have an alternate representation in terms of Z_9 parafermion characters. The $\tilde{\mathcal{W}}$ CFT has Thompson sporadic group symmetry with characters:

$$
\begin{aligned}
& \begin{array}{c}
\chi_{V T^{\natural}(0)}(\tau)=
\end{array} q^{-\frac{31}{33}}\left(1+30876 q^{2}+2634256 q^{3}+90061882 q^{4}+1855967520 q^{5}\right. \\
&\left.+27409643240 q^{6}+317985320008 q^{7}+3064708854915 q^{8}+\cdots\right) \\
& \chi_{V T^{\natural}(1)}(\tau)= q^{\frac{29}{33}}\left(30628+3438240 q+132944368 q^{2}+2954702008 q^{3}+45976123126 q^{4}\right. \\
&\left.+554583175040 q^{5}+5510740058664 q^{6}+46939446922208 q^{7}+\cdots\right) \\
& \chi_{V T^{\natural}(2)}(\tau)=q^{\frac{17}{33}}\left(4123+961248 q+49925748 q^{2}+1315392496 q^{3}+22953663126 q^{4}\right. \\
&\left.+301143085728 q^{5}+3193490344856 q^{6}+28662439021248 q^{7}+\cdots\right) \\
& \chi_{V T^{\natural}(3)}(\tau)=q^{\frac{32}{33}}\left(61256+5955131 q+216162752 q^{2}+4622827508 q^{3}+70051197488 q^{4}\right. \\
&\left.+828481014062 q^{5}+8106388952544 q^{6}+68191291976248 q^{7}+\cdots\right) \\
& \chi_{V T^{\natural}(4)}(\tau)=q^{\frac{8}{33}}\left(248+147498 q+10107488 q^{2}+308975512 q^{3}+5936748000 q^{4}\right. \\
&\left.+83455971224 q^{5}+932866634976 q^{6}+8730997273664 q^{7}+\cdots\right)
\end{aligned}
$$

This gives a fairly uniform construction of CFTs with symmetry groups that are sporadic groups (or minor extensions of sporadic group) for 7 of the sporadic group in the Monster. What about the others?

We have partial results using other products of minimal models and parafermions for several other groups but they seem to require further deconstruction before we have the right CFT "on the nose." These include Held, Hall-Janko, Suzuki and a couple of the Mathieu groups.

It is notable that the characters we find for Th and for Mathieu do not seem to be related to the weight $1 / 2$ (mock) modular forms that exhibit moonshine for these groups in the work of Rayhaun \& JH and Eguchi, Ooguri and Tachikawa.

It now seems plausible that all sporadic groups appearing as sub-quotients of the Monster can be viewed as the symmetry groups of certain special CFTs although quite a bit more work is required to see if this is really the case.

It is not clear if the remaining 6 sporadic groups can be fit into this framework, but some of them have recently been associated with modular forms/moonshine, so even they may eventually be understood using something like 2d CFT.
l'd like to change to change topics somewhat and briefly discussion a novel aspect of some special CFTs with sporadic symmetry groups.

Some of these CFTs are actually superconformal, and the superconformal generator and the symmetries preserving it are connected to quantum error correcting codes.

I will discuss one example, but we (G. Moore and I) have analyzed two others and hope the considerations may be more general.

Example: A c=6 SCFT describing a K3 sigma model with symmetry group $\mathbb{Z}_{2}^{8}: M_{20}$ (Gaberdiel, Taormina, Volpato, Wendland) $\quad T_{D_{4}} / \mathbb{Z}_{2} \quad S O(4)^{3}=S U(2)^{6}$

Recall the $\mathrm{N}=1$ superconformal algebra expressed in terms of the OPE:

$$
\begin{aligned}
G(z) G(w) & \sim \frac{\frac{\hat{c}}{4}}{(z-w)^{3}}+\frac{\frac{1}{2} T(w)}{z-w}+\cdots \\
T(z) G(w) & \sim \frac{\frac{3}{2} G(w)}{(z-w)^{2}}+\frac{\partial G(w)}{z-w}+\cdots \\
T(z) T(w) & \sim \frac{\frac{3}{4} \hat{c}}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+\cdots
\end{aligned}
$$

$\mathrm{G}(\mathrm{z})$ is a dimension $3 / 2$ operator. It can be constructed as a very special sum of tensor products of operators with smaller conformal weight:

$$
\frac{3}{2}=6 \times \frac{1}{4}
$$

The construction is related to both classical error correcting codes and quantum error correcting codes.

A classical error correcting code in a linear subspace of the tensor product of \boldsymbol{n} copies of the finite field with $q=p^{n}$ elements, $\mathcal{C} \subset \mathbb{F}_{q}^{n}$.

Physicists mainly encounter \mathbb{F}_{p} with p prime, integers mod p. We need \mathbb{F}_{4}
$\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\} \quad \mathbf{0}$ is additive identity, $\mathbf{1}$ is multiplicative identity and the addition and multiplication rules are

$$
\begin{aligned}
& \underline{1}+\underline{\omega}=\underline{\bar{\omega}} \\
& \underline{1}+\underline{\bar{\omega}}=\underline{\omega} \\
& \underline{\omega}+\underline{\bar{\omega}}=\underline{1} \\
& x+x=\underline{0} .
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\omega \omega}=\underline{\bar{\omega}} \\
& \underline{\omega \bar{\omega}}=\underline{1} \\
& \underline{\bar{\omega} \bar{\omega}}=\underline{\omega}
\end{aligned}
$$

Consider the GTVW K3 sigma model. It has a description in terms of a (subspace) of the tensor product of 6 level one affine SU(2) theories, $\widehat{S U(2)_{1}}$. This theory has a primary operator of dimension $\mathrm{h}=1 / 4$ which occurs with multiplicity 2 and creates states in the 2-dimensional irrep of SU(2).

$$
e^{\frac{i}{\sqrt{2}} \epsilon X(z)}, \quad \epsilon= \pm 1
$$

The product of six such operators has dimension 6/4=3/2 and can be labelled by

$$
\left(\epsilon_{1}, \epsilon_{2}, \cdots \epsilon_{6}\right) \sim\left|\epsilon_{1}\right\rangle \otimes \cdots \otimes\left|\epsilon_{6}\right\rangle \in\left(\mathbb{C}^{2}\right)^{6}
$$

We also use a notation where we list the slots with entry -1 in square brackets, so

Then a $\mathbf{N}=1$ superconformal generator is given by

$$
\begin{aligned}
\Psi & :=[\emptyset]+\mathrm{i}[123456]+([1234]+[3456]+[1256])+\mathrm{i}([12]+[56]+[34]) \\
& +([135]+[245]+[236]+[146])-\mathrm{i}([246]+[235]+[136]+[145])
\end{aligned}
$$

Where does this complicated looking thing come from and why does it have this form? The answer involves error correcting codes, both classical and quantum.

The hexacode \mathcal{H}_{6} is a classical error correcting code, a rank 3 subspace of $\left(\mathbb{F}_{4}\right)^{6}$. It can be specified in several ways, perhaps simplest is to just give generators:

$$
\begin{aligned}
& b_{1}=(1,0,0,1, \bar{\omega}, \omega) \\
& b_{2}=(0,1,0,1, \omega, \bar{\omega}) \\
& b_{3}=(0,0,1,1,1,1)
\end{aligned}
$$

We also need a group homomorphism from \mathbb{F}_{4}^{+}, which is \mathbb{F}_{4} considered as an Abelian group with + group law, to the quaternion subgroup of SU(2).

This extends in an obvious way to a map from the hexacode to $\operatorname{SU}(2)^{\wedge} 6$ and one finds the surprising result that
$h\left(w_{1}\right) h\left(w_{2}\right)=h\left(w_{1}+w_{2}\right), \quad w_{1}, w_{2} \in \mathcal{H}_{6}$

$$
\begin{aligned}
& h(\underline{0})=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& h(\underline{1})=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=i \sigma^{2} \\
& h(\underline{\omega})=\left(\begin{array}{ll}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right)=i \sigma^{1} \\
& h(\underline{\bar{\omega}})=\left(\begin{array}{cc}
-\mathrm{i} & 0 \\
0 & \mathrm{i}
\end{array}\right)=-i \sigma^{3} .
\end{aligned}
$$

It follows from this and properties of the hexacode that

$$
P=\frac{1}{64} \sum_{w \in \mathcal{H}_{6}} h(w)
$$

is a rank one projection operator and one checks that the $\mathrm{N}=1$ superconformal generator is given by

$$
\Psi=16 P|++++++\rangle
$$

We are using the earlier correspondence between dimension $3 / 2=6 \times 1 / 4$ operators and vectors in $\left(\mathbb{C}^{2}\right)^{6}$. In the language of quantum computation, Ψ is a state in a 6 -qubit system, and one with very special properties. It is a maximally entangled state and closely related to the smallest quantum error correcting code capable of correcting an arbitrary one qubit error.

Entangled quantum states carry information and can be used to encode quantum information in a way that protects it again errors. The smallest code that can detect and correct a single qubit error without destroying quantum information works by embedding a single qubit state into a 5 qubit state:

$$
\alpha|0\rangle+\beta|1\rangle \rightarrow \alpha\left|0_{L}\right\rangle+\beta\left|1_{L}\right\rangle
$$

where

$$
\begin{aligned}
\left|0_{L}\right\rangle= & \frac{1}{4}(|00000\rangle+|10010\rangle+|01001\rangle+|10100\rangle \\
& +|01010\rangle-|11011\rangle-|00110\rangle-|11000\rangle \\
& -|11101\rangle-|00011\rangle-|11110\rangle-|01111\rangle \\
& -|10001\rangle-|01100\rangle-|10111\rangle+|00101\rangle)
\end{aligned}
$$

$$
\begin{aligned}
\left|1_{L}\right\rangle & =X^{\otimes 5}\left|0_{L}\right\rangle \\
X & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

If we add one more qubit we can construct a maximally entangled 6 qubit state in that

$$
\Psi_{[[6,0,4]]}=\frac{1}{\sqrt{2}}\left(|0\rangle \otimes\left|0_{L}\right\rangle+|1\rangle \otimes\left|1_{L}\right\rangle\right)
$$

the trace over any three qubits gives the density matrix $\rho^{(3)}=\frac{I}{8}$

It turns out that this maximally entangled state, and the state describing the $\mathrm{N}=1$ superconformal generator in the GTVW model are unitarily equivalent (+,-) -> (0,1) (T. Maniero).

$$
\begin{aligned}
& \Psi_{[[6,0,4]]}=\left(1 \otimes U_{1} \otimes 1 \otimes U_{2} \otimes U_{2} \otimes 1\right) \Psi \\
& U_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right) \quad U_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
i & i
\end{array}\right)
\end{aligned}
$$

I have glossed over many interesting details:

1. The error correcting property is linked to the cancellation of certain terms in the OPE of general dimension 3/2 operators required to have superconformal symmetry.
2. The symmetry group preserving the superconformal symmetry is linked to the holomorph of the hexacode, Holomorph(G) $=G: \operatorname{Aut}(G)$ '
3. The 2^8:M20 symmetry preserving $(4,4)$ superconformal symmetry arises as a subgroup of $\mathrm{Hol}(\mathrm{G})$.

A similar construction can be used to construct the superconformal generator in a c=12 theory with Conway symmetry studied by Duncan and constructed out of 24 free fermions. Let γ_{i} be the fermion zero modes in the Ramond sector. The generate a Clifford algebra. Let

$$
\gamma_{w}=\gamma_{1}^{w_{1}} \cdots \gamma_{24}^{w_{24}} \quad w=\left(w_{1}, \cdots w_{24}\right) \in\left(\mathbb{F}_{2}\right)^{24}
$$

There is a non-trivial cocycle $\gamma_{w_{1}} \gamma_{w_{2}}=\epsilon\left(w_{1}, w_{2}\right) \gamma_{w_{1}+w_{2}}$ but it is trivializable when restricted to the Golay code $\mathcal{G} \in\left(\mathbb{F}_{2}\right)^{24}$ Let $\tilde{\gamma}_{w}$ be its trivialization. Then

$$
P=\frac{1}{2^{12}} \sum_{w \in \mathcal{G}} \tilde{\gamma}_{w}
$$

is a rank one projection operator and can be used to construct the superconformal generator, now of dimension 3/2=24/16.

This connection between superconformal generators and codes probably extends to other interesting SCFTs with sporadic symmetry groups such as the c=24 Monster CFT.

I would like to thank Bernard for his far-reaching insights into exceptional structures in physics and mathematics and wish him many more exciting discoveries in the future.

Thank You

$$
V_{s^{1}}\left(z_{1}\right) V_{s^{2}}\left(z_{2}\right) \sim \frac{\bar{s}^{1} s^{2}}{z_{12}^{3}}+\kappa_{1} \sum_{A} \frac{\bar{s}^{1} \Sigma^{A} s^{2}}{z_{12}^{2}} J^{A}+\kappa_{1}^{2} \sum_{\alpha<\beta} \frac{\bar{s}^{1} \Sigma^{A B} s^{2}}{z_{12}} J^{A} J^{B}+\kappa_{2} \frac{\bar{s}^{1} s^{2}}{z_{12}} T\left(z_{0}\right)+
$$

$$
V_{s}\left(z_{1}\right) V_{s}\left(z_{2}\right) \sim \frac{\bar{s} s}{z_{12}^{3}}+\kappa_{1}^{2} \sum_{\alpha<\beta} \frac{\bar{s} \Sigma^{A B} s}{z_{12}} J^{A} J^{B}+\frac{1}{2} \frac{\bar{s} s}{z_{12}} T++\cdots
$$

N=1 superconformal

 OPE implies that$$
\bar{s} \Sigma^{A B} s=0 \quad 1 \leq \alpha<\beta \leq 6
$$

