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Introduction

Bernard has always emphasized the crucial importance of
cohomological ideas in physics.

My talk will be an illustration of the power of cohomological
methods in the context of gauge field theories.

It will be devoted to BRST theory.

I will focus in particular on the cohomological significance of the
antifields,

which is crucial for computing explicitly the BRST cohomology.

These were introduced by Zinn-Justin, and Batalin and Vilkovisky.
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Introduction

I will successively discuss :

BRST differential in Yang-Mills theory

Antifields and Koszul-Tate resolution

Homological perturbation theory (and L∞ algebras)

Local functionals and characteristic complex

Conclusions
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Yang-Mills theory

The BRST differential s in Yang-Mills theory reads (in the
“minimal sector")

sAa
µ = DµCa , sCa =−1

2
f a

bcCbCc ,

sA∗µ
a = DνFνµa + f b

acA∗µ
b Cc , sC∗

a = DµA∗µ
a + f b

acC∗
b Cc .

It is generated in the antibracket by the solution S of the “master
equation",

sF = (S,F)

S =−1

4

∫
dnxFµνa Fa

µν+
∫

dnxA∗µ
a sAa

µ+
∫

dnxC∗
a sCa,

and nilpotency of s is equivalent to the “master equation",

s2 = 0 ⇔ (S,S) = 0.
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Antifields

A∗µ
a and C∗

a are the “antifields".

Antifields were originally introduced by Zinn-Justin in his
seminal work on the renormalization of gauge theories, as
sources coupled to the BRST variations of the fields.

This was motivated by the desire to control how the nonlinear
BRST symmetry passes through the renormalization process.

A different interpretation of the antifields can be developed.

This interpretation has cohomological origins and views the
antifields as the generators of a differential complex that
implements the gauge invariant equations of motion in
cohomology.

This different point of view turns out to be crucial for computing
the BRST cohomology.
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Covariant phase space

The phase spaceΠ of a gauge theory can be covariantly described
as the space of solutions to the equations of motion modulo the
gauge transformations.

The equations of motion define a “surface” in the space J of all
histories, which is called the “stationary surface” and denoted by
Σ.

C∞(Σ) is the space of smooth functions on that surface.

Formally,Π is the quotient spaceΠ=Σ/O of the stationary
surface Σ by the gauge orbits O generated by the gauge
transformations.

[For local objects, jet space formalism can be used to put these
considerations on a firmer footing.]
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histories, which is called the “stationary surface” and denoted by
Σ.

C∞(Σ) is the space of smooth functions on that surface.

Formally,Π is the quotient spaceΠ=Σ/O of the stationary
surface Σ by the gauge orbits O generated by the gauge
transformations.

[For local objects, jet space formalism can be used to put these
considerations on a firmer footing.]
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Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :

(1) Restriction to the stationary surface ;
(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :

(1) Restriction to the stationary surface ;
(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :

(1) Restriction to the stationary surface ;
(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :
(1) Restriction to the stationary surface ;

(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :
(1) Restriction to the stationary surface ;
(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :
(1) Restriction to the stationary surface ;
(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :
(1) Restriction to the stationary surface ;
(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Covariant phase space

The observables are the functions onΠ.

This description of the observables involves two steps :
(1) Restriction to the stationary surface ;
(2) Implementation of the gauge invariance condition on Σ.

The BRST differential provides a cohomological formulation of
C∞(Π) at ghost number zero, H0(s) = {Observables}.

To each of the steps (1), (2) corresponds a separate differential.

Both differentials appear in s.

7 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Antifield number

To exhibit this property, it is useful to introduce the antifield
number,

puregh antifd gh
Aa
µ 0 0 0

Ca 1 0 1
A∗µ

a 0 1 −1
C∗

a 0 2 −2

Pure ghost number, antifield number and gh ≡ puregh−antifd (“total ghost

number"), for the different field types

One has s = δ+γ, with antifd(δ) =−1 and antifd(γ) = 0

Explicitly, δAa
µ = 0, δCa = 0, δA∗µ

a = DνFνµa , δC∗
a = DµA∗µ

a

and γAa
µ = DµCa, γCa =− 1

2 f a
bcCbCc, γA∗µ

a = f b
acA∗µ

b Cc,

γC∗
a = f b

acC∗
b Cc.

Nilpotency of s implies δ2 = 0, δγ+γδ= 0, γ2 = 0.
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Koszul-Tate differential

The differential δ is called the “Koszul-Tate differential" because
it is associated with the Koszul-Tate resolution of the algebra of
functions on the stationary surface (first step),

in the sense that Hm ≡
(

Kerδ
Imδ

)
m
= 0 for m > 0 and H0(δ) = C∞(Σ).

The differential γ is called the “exterior derivative along the gauge
orbits" and implements the second (gauge invariance) condition,
so that H0(γ,C∞(Σ)) = {Observables}.

This second aspect is well appreciated (Chevalley-Eilenberg
differential and “Lie algebra cohomology" in the relevant
representation space).

Furthermore, it is also clear that H0(s) ' H0(H0(γ),H0(δ))
(standard spectral sequence argument).

We shall for this reason only focus here on the Koszul-Tate
differential δ.
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Koszul-Tate differential

The algebra C∞(Σ) of smooth functions on the stationary surface
can be viewed as the quotient of the algebra C∞(J) of smooth
functions of the histories by the ideal N of functions that vanish
on Σ.

The ideal N is generated by the left-hand sides DνFµνa of the
equations of motion and their successive derivatives ∂ρDνFµνa ,
∂σ∂ρDνFµνa , in the sense that

f ∈N ⇔ f = ka
µDνFµνa +kaρ

µ ∂ρDνFµνa +kaρσ
µ ∂σ∂ρDνFµνa +·· ·

for some smooth coefficients k’s.

But this is exactly equivalent to f = δh

with
h = ka

µA∗µ
a +kaρ

µ ∂ρA∗µ
a +kaρσ

µ ∂σ∂ρA∗µ
a +·· ·
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Thus (Imδ)0 =N

and therefore H0(δ) = C∞(Σ).

Is there (co)homology at other values of the antifield number ?

At antifield number 1, one finds that DµA∗µ
a is a cycle, δDµA∗µ

a = 0
because of the Noether identity DµDνFµνa = 0.

Without the antifields C∗
a conjugate to the ghosts, these cycles

woud be non trivial because they do not vanish on Σ.

The antifields C∗
a kill these (otherwise non-trivial) cycles, so that

H1(δ) = 0.

Indeed,
DµA∗µ

a = δC∗
a .
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Koszul-Tate differential

One can show that similarly,

Hm(δ) = 0, (m ≥ 1).

(If the gauge transformations were reducible, one would need
“ghosts of ghosts" and on the Koszul-Tate side, “antifields for
antifields".)

Thus, the Koszul-Tate complex provides a resolution of the
algebra C∞(Σ) of smooth functions on the stationary surface.

(If one includes the ghosts, one gets C∞(Σ)⊗Λ(Ca,∂µCa, · · · ).)
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Beyond Yang-Mills

The recognition of the antifields as related to a resolution of the
stationary surface is key to the formulation of BRST theory
beyond Yang-Mills.

(1) When the gauge transformations are reducible, one needs
ghosts of ghosts and their conjugate antifields to maintain the
resolution property.

(2) When the gauge transformations are “open" (on-shell closure
only"), the construction is more elaborate because γ2 6= 0, but
γ2 ≈ 0 (only on-shell). This requires additional terms in s,

s = δ+γ+ s1 + s2 +·· ·

to guarantee s2 = 0.

This is the Batalin-Vilkovisky construction, which works because
the Koszul-Tate complex is a resolution.
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Homological perturbation theory

To give an idea :(
δ+γ+·· ·)2 = δ2 + (δγ+γδ)+ (γ2)+·· · ,

= 0+0+ (γ2)+·· · .

But one has γ2 =−δs1 − s1δ for some s1

and therefore,(
δ+γ+ s1 +·· ·)2 = δ2 + (δγ+γδ)+ (γ2 +δs1 + s1δ)+·· ·

= 0+0+0+·· · .

The procedure continues in the same way at higher antifield
number.
(Homological perturbation theory).
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number.

(Homological perturbation theory).

14 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

Homological perturbation theory

To give an idea :(
δ+γ+·· ·)2 = δ2 + (δγ+γδ)+ (γ2)+·· · ,

= 0+0+ (γ2)+·· · .

But one has γ2 =−δs1 − s1δ for some s1

and therefore,(
δ+γ+ s1 +·· ·)2 = δ2 + (δγ+γδ)+ (γ2 +δs1 + s1δ)+·· ·

= 0+0+0+·· · .

The procedure continues in the same way at higher antifield
number.
(Homological perturbation theory).

14 / 24



The
antifield-BRST

approach to
(gauge) field
theories: an

overview

Marc Henneaux

Introduction

BRST differential
in Yang-Mills
theory

Antifields and
Koszul-Tate
resolution

Homological
perturbation
theory

Local functionals
and characteristic
complex

Conclusions

p-form gauge fields, ghosts of ghosts

Acyclicity of δ is essential.

If gauge transformations are reducible, δ as defined above is not
acyclic and one needs more antifields to recover this property :

Bµν, Cµ, γBµν = ∂[µCν], δC∗µ = ∂νB∗µν, δ∂µC∗µ = 0

Need to introduce antifield C∗ at antifield number −3 such that

δC∗ = ∂µC∗µ.

On the ghost side, needs conjugate “ghost of ghosts”C with ghost
number +2 and such that γCµ = ∂µC.

Procedure works and corresponding term in the solution of the
master equation is ∼ ∫

dnxC∗µ∂µC.
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Master equation

In terms of the solution S of the master equation (S,S) = 0,

S = S0 +S1 +S2 +·· ·

with

(S0,S0) = 0, (S0,S1) = 0, 2(S0,S2)+ (S1,S1) = 0, · · ·

Acyclicity of δ guarantees the existence of S2 and of the
successive terms.

For instance, (S0,S1) = 0 implies (S0, (S1,S1)) = 0 from which one
infers the existence of S2 using acyclicity.

Etc
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Extension

The construction can be carried through even if the equations do
not derive from a variational principle.

In that case, however, there is in general no matching between
fields and antifields

and no natural antibracket.

The BRST differential s = δ+γ+·· · can be constructed as before

but is not generated in the antibracket through the solution S of
the master equation.
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Local Functionals

Also quite relevant to physics is the BRST cohomology in the
space of local functionals.

A local functional is the integral of a local n-form

A local p-form is a p-form with coefficients that are local
functions.

So a local functional is

F =
∫
ω, ω= fdnx,

where f is a local function.

18 / 24
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BRST cohomology in the space of local functionals

The cocycles and coboundary conditions for local functionals
read

sω+da = 0 and ω= sψ+db

in terms of the integrands since∫
da = 0.

This defines the mod-d cohomology Hm(s|d).
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Hm(δ|d)

A crucial element in the computation of Hm(s|d) is the homology
Hm(δ|d), defined similarly through

δω+da = 0 and ω= δψ+db

Now, while Hm(δ) = 0 for m > 0,

it turns out not to be true that Hm(s|d) = 0 for m > 0.

For instance an abelian ghost C∗ fulfills δC∗ = ∂µA∗µ and defines
a non-trivial element of H2(δ|d).
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Hm(δ|d), defined similarly through

δω+da = 0 and ω= δψ+db

Now, while Hm(δ) = 0 for m > 0,

it turns out not to be true that Hm(s|d) = 0 for m > 0.

For instance an abelian ghost C∗ fulfills δC∗ = ∂µA∗µ and defines
a non-trivial element of H2(δ|d).
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Characteristic cohomology

The characterisic cohomology in form-degree k is defined

to be the space of k-forms that are closed on-shell

modulo the k-form that are exact on-shell,

da ≈ 0, a ∼ a′ iff a′−a ≈ db.

The conserved currents correspond to the characteristic
cohomology in form-degree n−1.

Using the Koszul-Tate differential, one easily sees that the
characteristic cohomology is just Hk

0 (d|δ).

Reading the cocycle condition δω+da = 0 in both directions, one
easily proves the isomorphisms

H i
j (δ|d) ' H i−1

j−1 (d|δ), i, j > 1, (i, j) 6= (1,1); H1
1 (δ|d) ' H0

0 (d|δ)

R
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Results

In particular, Hn
1 (δ|d) ' Hn−1

0 (d|δ) is just a cohomological
reformulation of the Noether theorem.

Hn
2 (δ|d) ' Hn−2

0 (d|δ) relates∗F (which is a (n−2)-form closed
on-shell in the abelian case) to c∗dnx.

One can compute explicitly the cohomologies H(δ|d) and H(d|δ)

and also the corresponding invariant cohomologies.

Once this is done, one can compute explicitly the BRST
cohomology H(s|d) (BRST cohomology in the space of local
functionals).

The understanding that s involves δ – and the corresponding
spectral sequence – is crucial for this purpose.
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Conclusions and comments

Antifields were originally introduced by Zinn-Justin as sources
coupled to the BRST variations of the fields.

A different interpretation of the antifields can be developed.

The antifields can indeed also be viewed as the generators of the
Koszul-Tate “resolution" that implements the equations of
motion in cohomology.

This point of view turns out to be crucial for computing the BRST
cohomology.
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