From E_{7} to E_{10}

Thibault DAMOUR Institut des Hautes Études Scientifiques

Exceptional Dimensions
A Conference in Honour of Bernard Julia
16-17 December 2019, Institut Henri Poincaré, Paris

E_{7}

THE $N=8$ SUPERGRAVITY THEORY. I. THE LAGRANGIAN

E. CREMMER and B. JULIA

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure 1, 75231 Paris Cedex 05, France

Received 25 September 1978

The $\mathrm{SO}(8)$ supergravity action is constructed in closed form. A local $\mathrm{SU}(8)$ group as well as the exceptional group E_{7} are invariances of the equations of motion and of a new first order lagrangian.

Genericity of Cosmological Singularities?

Landau 1959: Is the big bang singularity of Friedmann universes a generic property of general relativistic cosmologies, or is it an artefact of the high degree of symmetry of these solutions?

Khalatnikov and Lifshitz 1963: look for generic inhomogeneous and anisotropic solutions near a singularity

$$
d s^{2}=-d t^{2}+\left(a^{2} \ell_{i} \ell_{j}+b^{2} m_{i} m_{j}+c^{2} n_{i} n_{j}\right) d x^{i} d x^{j}
$$

single homogeneous Friedmann scale factor $a(t) \rightarrow$ three inhomogeneous scale factors $a(t, \mathbf{x}), b(t, \mathbf{x}), c(t, \mathbf{x})$

KL63 did not succeed in finding the "general" solution of the complicated, coupled dynamics of a, b, c and tentatively concluded that a singularity is not generic.

Structure of Cosmological Singularities

local collapse: Penrose 1965; cosmology: Hawking 1966-7, HawkingPenrose 1970: Theorems about genericity of cosmological "singularity". They prove generic "incompleteness" of spacetime, without giving any information about the "singularity".

Belinsky, Khalatnikov, Lifshitz 1969:

- introduce a new approach to construct the "general" solution near $a b c \rightarrow 0$ of the coupled (inhomogeneous) dynamics of $a(t, \mathbf{x}), b(t, \mathbf{x})$, $c(t, \mathbf{x})$,
- find that, at each point of space \mathbf{x}, the dynamics of a, b, c is chaotic.

The BKL conjecture has been confirmed both by numerical simulations (Weaver-Isenberg-Berger 1998, Berger-Moncrief 1998, Berger et al 1998-2001; Garfinkle 2002-2007; Berger's Living Review) and by analytical studies (Damour-Henneaux-Nicolai 2003; Uggla et al 20032007; Damour-De Buyl 2008).

BKL chaos near a big bang or a big crunch

BIG CRUNCH

Dynamics of BKL a, b, c system

January 1968, at the Institut Henri Poincaré, Isaak Khalatnikov gives a seminar in which he announces to the western world the results of BKL. He shows the system of equations for the three local scale factors a, b, c [with new time variable $d \tau=-d t /(a b c)]$

$$
\begin{aligned}
& 2 \frac{d^{2} \ln a}{d \tau^{2}}=\left(b^{2}-c^{2}\right)^{2}-a^{4} \\
& 2 \frac{d^{2} \ln b}{d \tau^{2}}=\left(c^{2}-a^{2}\right)^{2}-b^{4} \\
& 2 \frac{d^{2} \ln c}{d \tau^{2}}=\left(a^{2}-b^{2}\right)^{2}-c^{4}
\end{aligned}
$$

J.A. Wheeler was in the audience and immediately pointed out the possibility of a mechanical analogy for this model. He informed his former student Charles Misner (who was independently working on the Bianchi IX dynamics) of the BKL results. In 1969 Misner published a mechanical-like, Lagrangian analysis of the Bianchi IX (a, b, c) system under the catchy name of "mixmaster universe".

Cosmological Billiards

(Misner 1969a, 1969b [quantum], Chitre 1972, . . ., Damour,Henneaux,Nicolai,Julia \geq 2000, . . ., Belinski-Henneaux 2018)

$$
d s^{2}=-d t^{2}+\left(a^{2} \ell_{i} \ell_{j}+b^{2} m_{i} m_{j}+c^{2} n_{i} n_{j}\right) d x^{i} d x^{j}
$$

exponential parametrisation: $a=e^{-\beta^{1}}, b=e^{-\beta^{2}}, c=e^{-\beta^{3}}$
Lagrangian ruling the dynamics of the β 's at each spatial point

$$
\mathcal{L}=\frac{1}{2} G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}-V(\beta)
$$

Kinetic metric $G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}=\sum_{a}\left(\dot{\beta}^{a}\right)^{2}-\left(\sum_{a} \dot{\beta}^{a}\right)^{2} \quad$ (DeWitt metric)
Potential $V(\beta)=a^{4}+b^{4}+c^{4}-2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)=\sum_{a} c_{A}(\ldots) e^{-2 w_{A}(\beta)}$
Wall forms $w_{A}(\beta)$: e.g. gravitational walls: $w_{a b c}^{(g)}(\beta)=\sum_{e} \beta^{e}+\beta^{a}-\beta^{b}-\beta^{c}$

Billiard in β space: Toda-like exponential potentials $V(\beta)=\sum_{a} c_{A}(\ldots) e^{-2 w_{A}(\beta)}$

The appearance of E_{10} in maximal SUGRA

$\mathbf{E}_{10}, \mathrm{BE}_{10}$ and Arithmetical Chaos in Superstring Cosmology

Thibault Damour ${ }^{1}$ and Marc Henneaux ${ }^{2}$
${ }^{1}$ Institut des Hautes Etudes Scientifiques, 35, route de Chartres, F-91440 Bures-sur-Yvette, France
${ }^{2}$ Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P.231, B-1050, Bruxelles, Belgium (Received 19 December 2000)

$$
\begin{gathered}
S=\int d \tau\left[G_{\mu \nu} \frac{d \beta^{\mu}}{d \tau} \frac{d \beta^{\nu}}{d \tau}-V\left(\beta^{\mu}\right)\right] \\
V(\beta) \simeq \sum_{A} C_{A} e^{-2 w_{A}(\beta)}
\end{gathered}
$$

liards. The first block (with 2 SUSY's in $D=10$) is $\mathcal{B}_{2}=$ $\{M$, IIA, IIB $\}$ and its ten walls are (in the natural variables of M theory $\beta^{\mu}=\beta_{M}^{\mu}$),

$$
\begin{align*}
\mathcal{B}_{2}: w_{i}^{[2]}(\beta) & =-\beta^{i}+\beta^{i+1} \quad(i=1, \ldots, 9), \\
w_{10}^{[2]}(\beta) & =\beta^{1}+\beta^{2}+\beta^{3} . \tag{4}
\end{align*}
$$

\mathcal{B}_{2}

From E_{7} to E_{10}

Compactification down to $D=4 \rightarrow E_{7}$ Compactification down to $D=3 \rightarrow E_{8}$ Compactification down to $D=2 \rightarrow E_{9}$ Spontaneous compactification down to $D=1 \rightarrow E_{10}$

Kac-Moody algebras

Generalization of the well-known "triangular" structure of $A_{1}=s o(3)=s u(2)=s /(2)$: diagonalizable (Cartan) generator: J_{z}, and raising/lowering generators: $J_{ \pm}=J_{x} \pm i J_{y}$ with $\left[J_{z}, J_{+}\right]=+J_{+} ; \quad\left[J_{z}, J_{-}\right]=-J_{-} ; \quad\left[J_{+}, J_{-}\right]=2 J_{z}$

Rank r : r mutually commuting Cartan generators h_{i} and r simple raising (e_{i}) and lowering $\left(f_{i}\right)$ generators:

$$
\left[h_{i}, h_{j}\right]=0 ;\left[h_{i}, e_{j}\right]=A_{i j} e_{j} ; \quad\left[h_{i}, f_{j}\right]=-A_{i j} f_{j} ; \quad\left[e_{i}, f_{j}\right]=\delta_{i j} h_{j}
$$

Serre relations: $a d_{e_{i}}^{1-A_{i j}} e_{j}=0 ; a d_{i_{i}}^{1-A_{i j}} f_{j}=0$
$A_{i j}=$ Cartan matrix: $A_{i i}=+2, A_{i j} \in-\mathbb{N}$
Roots: $\alpha=$ linear form on Cartan: $h=\sum_{i} \beta^{i} h_{i} \rightarrow \alpha(h)=\alpha_{i} \beta^{i}$

$$
\begin{gathered}
E_{\alpha} \sim\left[e_{i_{1}}\left[e_{i_{2}}\left[e_{i_{3}}, \ldots\right]\right]\right] \quad \alpha=n_{1} \alpha^{(1)}+n_{2} \alpha^{(2)}+\ldots+n_{r} \alpha^{(r)} \\
e_{i}=E_{\alpha^{(i)}} \text { simple roots; }\left[h, E_{\alpha}^{(s)}\right]=\alpha(h) E_{\alpha}^{(s)} \quad A_{i j}=\frac{2\left(\alpha^{(i)}, \alpha^{(j)}\right)}{\left(\alpha^{(i)}, \alpha^{(i)}\right)}
\end{gathered}
$$

Dynkin Diagrams (= Cartan Matrix) of E_{10} and $A E_{3}$

Figure: Dynkin diagram of E_{10} with numbering of nodes.
Cartan matrix of $A E_{3}:\left(A_{i j}\right)=\left(\begin{array}{ccc}2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$

Dynkin diagram $A E_{3}$

The surprising behavior of pure gravity in any D Demaret et al 85, Damour-Henneaux-Julia-Nicolai 01

Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models

Thibault Damour ${ }^{\text {a }}$, Marc Henneaux ${ }^{\text {b,c }}$, Bernard Julia ${ }^{\text {d }}$, Hermann Nicolai ${ }^{e}$

Einstein Billiards (chaotic versus non-chaotic)

$$
\begin{aligned}
& \beta^{N}=\rho \gamma^{N} \\
& G_{\mu \nu} \gamma^{N} \gamma^{v}=-1 \\
& \text { ON UNIT AUTURS HYPERSOLDiO }
\end{aligned}
$$

Conjectured Gravity/Kac-Moody Coset Correspondence

Damour, Henneaux, Julia, Nicolai 200, [related suggestions: E_{10}, Ganor '99 '04; E_{11} : West '01]
Beyond the simple roots, the potential $V(\beta)=\sum_{a} c_{A}(\ldots) e^{-2 w_{A}(\beta)}$ with $w_{A}(\beta)=\alpha(\beta)$ might be equivalent to including all Kac-Moody Roots $w_{A}(\beta)=\alpha \leftrightarrow$ i.e. all Lie-algebra generators E_{α} ?

Appearance of E_{10} in the "near cosmological singularity limit" suggests the existence of a supergravity/ E_{10} coset correspondence in which the 'singularity' is 'resolved' by the effective 'disappearance' of space, and the replacement of dynamical fields, $g_{i j}(t, \mathbf{x}), \mathcal{A}_{j j k}(t, \mathbf{x}), \ldots$ by a Liealgebraic variable $g(t) \in E_{10}(\mathbb{Z}) \backslash E_{10}(\mathbb{R}) / K_{10}(\mathbb{R})$

Basic Idea: two 'dual' descriptions
near spacguke singularity

$$
\begin{aligned}
& G_{\mu \nu}(t, \vec{x}) \\
& A_{\mu \nu \lambda}(t, \vec{x}) \\
& \psi_{\mu}(t, \vec{x})
\end{aligned}
$$ DESCRIPTION

$$
\begin{array}{cc}
\text { Supergravity Description } & \text { Coset Description } \\
\begin{array}{cc}
G_{\mu \vee}(t, \mathbf{x}), \mathcal{A}_{\mu \gamma \lambda}(t, \mathbf{x}), \psi_{\mu}(t, \mathbf{x}) \\
\text { in }\left(T^{10} ?\right) \text { compactified space }
\end{array} & g(t) \in E_{10}(\mathbb{Z}) \backslash E_{10}(\mathbb{R}) / K_{10}(\mathbb{R}) \\
\mathcal{R} \ll \ell_{P}^{-2} & \mathcal{R} \gg \ell_{P}^{-2}
\end{array}
$$

MASSLESS SPINNING PARTIC on coset $E_{10} / K\left(E_{10}\right)$

Gravity/coset correspondence

(super)gravity \leftrightarrow massless (spinning) particle on G / K

$g(t) \in G / K$; velocity $v \equiv \partial_{t} g g^{-1} \in \operatorname{Lie}(G)$ is decomposed into $v=$ $\mathcal{P}+\mathcal{Q}$ where $\mathcal{Q} \in \operatorname{Lie}(K)$ and $\mathcal{P}=v^{\text {sym }}=\frac{1}{2}\left(v+v^{\top}\right) \in \operatorname{Lie}(G)-\operatorname{Lie}(K)$

Coset Action for massless particle:

$$
S_{1_{\mathrm{Bos}}}^{\text {coset }}=\int \frac{d t}{n(t)} \frac{1}{4}\langle\mathcal{P}(t), \mathcal{P}(t)\rangle
$$

$n(t):$ coset lapse \rightarrow constraint $\langle\mathcal{P}(t), \mathcal{P}(t)\rangle=0$
For hyperbolic (or more generally Lorentzian) Kac-Moody algebras the coset G / K is an infinite dimensional Lorentzian space of signature $-+++++\ldots$

Evidence for gravity/coset correspondence

Damour, Henneaux, Nicolai 02; Damour, Kleinschmidt, Nicolai 06; de Buyl, Henneaux, Paulot 06; Kleinschmidt, Nicolai 06
Insert in $S_{1}^{\text {COSET }}=\int d t\left\{\frac{1}{4 n(t)}\langle P(t), P(t)\rangle-\frac{i}{2}\left(\Psi(t) \mid \mathcal{D}^{\text {vs }} \Psi(t)\right)_{\mathrm{vs}}+\ldots\right\}$ the $G L(10)$ level expansion of the coset element

$$
g(t)=\exp \left(h_{b}^{a}(t) K_{a}^{b}\right) \times
$$

$$
\times \exp \left[\frac{1}{3!} A_{a b c}(t) E^{a b c}+\frac{1}{6!} A_{a_{1} \ldots a_{6}}(t) E^{a_{1} \ldots a_{6}}+\frac{1}{9!} A_{a_{0} \mid a_{1} \ldots a_{8}}(t) E^{a_{0} \mid a_{1} \ldots a_{8}}+\ldots\right]
$$

Agreement (up to height 29) of EOM of $g^{a b}(t)=\left(e^{h}\right)_{c}^{a}\left(e^{h}\right)_{c}^{b}, A_{a b c}(t), A_{a_{1} \ldots a_{6}}(t)$, $A_{a_{0} \mid a_{1} \ldots a_{8}}(t)$, and $\Psi_{a}^{\text {coset }}(t)$ with supergravity EOM (including lowest spatial gradients) for $G_{\mu \nu}(t, \mathbf{x}), \mathcal{A}_{\mu \nu \lambda}(t, \mathbf{x}), \psi_{\mu}(t, \mathbf{x})$ with dictionary:
$g^{a b}(t)=G^{a b}\left(t, \mathbf{x}_{0}\right), \quad \dot{A}_{a b c}(t)=\mathcal{F}_{0 a b c}\left(t, \mathbf{x}_{0}\right)$,
$D A^{a_{1} \ldots a_{6}}(t)=-\frac{1}{4!} \varepsilon^{a_{1} \ldots a_{6} b_{1} \ldots b_{4}} \mathcal{F}_{b_{1} \ldots b_{4}}\left(t, \mathbf{x}_{0}\right)$,
$D A^{b \mid a_{1} \ldots a_{8}}(t)=\frac{3}{2} \varepsilon^{a_{1} \ldots a_{8} b_{1} b_{2}} C_{b_{1} b_{2}}^{b}\left(t, \mathbf{x}_{0}\right)$
and $\Psi_{a}^{\text {coset }}(t)=G^{1 / 4} \psi_{a}\left(t, \mathbf{x}_{0}\right)$
Moreover, \exists roots in E_{10} formally associated with the infinite towers of higher spatial gradients of $G_{\mu \nu}(t, \mathbf{x}), \mathcal{A}_{\mu \nu \lambda}(t, \mathbf{x}), \psi_{\mu}(t, \mathbf{x})$

Bosonic EOM of SUGRA 11

$D=11$ spacetime, zero-shift slicing ($N^{i}=0$) time-independent spatial coframe $\theta^{a}(x) \equiv$ $E^{a}{ }_{i}(x) d x^{i}, i=1, \ldots, 10 ; a=1, \ldots, 10$ choose time coordinate x^{0} s.t. lapse $N=\sqrt{G}$ with $G:=\operatorname{det} G_{a b}$
structure constants of frame: $d \theta^{a}=\frac{1}{2} C_{b c}^{a} \theta^{b} \wedge \theta^{c}$; frame derivative $\partial_{a} \equiv E^{i}{ }_{a}(x) \partial_{i}$; 3-form $\mathcal{A} ; 4$-form $\mathcal{F}=d \mathcal{A} ; 2 G_{a d} \Gamma_{b c}^{d}=C_{a b c}+C_{b c a}-C_{c a b}+\partial_{b} G_{c a}+\partial_{c} G_{a b}-\partial_{a} G_{b c}$

$$
\begin{gathered}
d s^{2}=-N^{2}\left(d x^{0}\right)^{2}+G_{a b} \theta^{a} \theta^{b} \\
\mathcal{F}=\frac{1}{3!} \mathcal{F}_{0 a b c} d x^{0} \wedge \theta^{a} \wedge \theta^{b} \wedge \theta^{c}+\frac{1}{4!} \mathcal{F}_{a b c d} \theta^{a} \wedge \theta^{b} \wedge \theta^{c} \wedge \theta^{d} \\
\partial_{0}\left(G^{a c} \partial_{0} G_{c b}\right)=\frac{1}{6} G \mathcal{F}^{a \beta \gamma \delta} \mathcal{F}_{b \beta \gamma \delta}-\frac{1}{72} G \mathcal{F}^{\alpha \beta \gamma \delta} \mathcal{F}_{\alpha \beta \gamma \delta} \delta_{b}^{a}-2 G R_{b}^{a}(\Gamma, C) \\
\partial_{0}\left(G \mathcal{F}^{0 a b c}\right)=\frac{1}{144} \varepsilon^{a b c a_{1} a_{2} a_{3} b_{1} b_{2} b_{3} b_{4}} \mathcal{F}_{0 a_{1} a_{2} a_{3}} \mathcal{F}_{b_{1} b_{2} b_{3} b_{4}} \\
+\frac{3}{2} G \mathcal{F}^{d e[a b} C^{c]}{ }_{d e}-G C^{e}{ }_{d e} \mathcal{F}^{d a b c}-\partial_{d}\left(G \mathcal{F}^{d a b c}\right) \\
\partial_{0} \mathcal{F}_{a b c d}=6 \mathcal{F}_{0 e[a b} C^{e}{ }_{c d]}+4 \partial_{[a} \mathcal{F}_{0 b c d]}
\end{gathered}
$$

$K\left(E_{10}\right)$ Structure of Gravitino Eq. of Motion

In the gauge $\psi_{0}^{(11)}=\Gamma_{0} \Gamma^{a} \psi_{a}^{(11)}$, the equation of motion of the rescaled gravitino $\psi_{a}^{(10)}:=g^{1 / 4} \psi_{a}^{(11)}$ (neglecting cubic terms) reads

$$
\mathcal{E}_{a}=\partial_{t} \psi_{a}^{(10)}+\omega_{t a b}^{(11)} \psi^{(10) b}+\frac{1}{4} \omega_{t c d}^{(11)} \Gamma^{c d} \psi_{a}^{(10)}
$$

$$
-\frac{1}{12} F_{t b c d}^{(11)} \Gamma^{b c d} \psi_{a}^{(10)}-\frac{2}{3} F_{t a b c}^{(11)} \Gamma^{b} \psi^{(10) c}+\frac{1}{6} F_{t b c d}^{(11)} \Gamma_{a}^{b c} \psi^{(10) d}
$$

$$
+\frac{N}{144} F_{b c d e}^{(11)} \Gamma^{0} \Gamma^{b c d e} \psi_{a}^{(10)}+\frac{N}{9} F_{a b c d}^{(11)} \Gamma^{0} \Gamma^{b c d e} \psi_{e}^{(10)}-\frac{N}{72} F_{b c d e}^{(11)} \Gamma^{0} \Gamma_{a b c d e f} \psi^{(10) f}
$$

$$
+N\left(\omega_{a b c}^{(11)}-\omega_{b a c}^{(11)}\right) \Gamma^{0} \Gamma^{b} \psi^{(10) c}+\frac{N}{2} \omega_{a b c}^{(11)} \Gamma^{0} \Gamma^{b c d} \psi_{d}^{(10)}-\frac{N}{4} \omega_{b c d}^{(11)} \Gamma^{0} \Gamma^{b c d} \psi_{a}^{(10)}
$$

$$
+N g^{1 / 4} \Gamma^{0} \Gamma^{b}\left(2 \partial_{a} \psi_{b}^{(11)}-\partial_{b} \psi_{a}^{(11)}-\frac{1}{2} \omega_{c c b}^{(11)} \psi_{a}^{(11)}-\omega_{00 a}^{(11)} \psi_{b}^{(11)}+\frac{1}{2} \omega_{00 b}^{(11)} \psi_{a}^{(11)}\right) .
$$

Apart from the last line, this is equivalent to the $K\left(E_{10}\right)$-covariant equation

$$
0=\stackrel{\mathrm{vs}}{\mathcal{D}} \Psi(t):=\left(\partial_{t}-\stackrel{\mathrm{vs}}{\mathcal{Q}}(t)\right) \Psi(t) .
$$

expressing the parallel propagation of the $K\left(E_{10}\right)$ vector-spinor $\Psi(t)$ along the $E_{10} / K\left(E_{10}\right)$ worldline of the coset particle, with the $K\left(E_{10}\right)$ connection $\mathcal{Q}(t):=\frac{1}{2}\left(v(t)-v^{\top}(t)\right) \in \operatorname{Lie}\left(K\left(\mathrm{E}_{10}\right)\right)$, with $v(t)=\partial_{t} g g^{-1} \in \mathfrak{e}_{10} \equiv \operatorname{Lie}\left(E_{10}\right)$.

Quantum Gravity \leftrightarrow Quantum Coset Model

Quantum Bosonic Coset Model: in configuration space β^{a}, ν^{α}

$$
\square_{E_{10} / K_{10}} \Psi\left(\beta^{a}, \nu^{\alpha}\right)=0
$$

$$
\left[-G^{a b} \partial_{\beta^{a}} \partial_{\beta^{b}}-\sum_{\alpha>0} e^{-2 \alpha(\beta)} \partial_{v^{\alpha}}^{2}+\ldots\right] \Psi\left(\beta^{a}, v^{\alpha}\right)=0
$$

Infinite-dimensional Klein-Gordon type equation: $-+++++\ldots$
From Hull-Townsend '95 expect $E_{10}(\mathbb{Z})$ symmetry, i.e.
$\Psi(\beta, \nu)=$ automorphic function over $E_{10}(\mathbb{Z}) \backslash E_{10}(\mathbb{R}) / K_{10}(\mathbb{R})$
(Ganor '99; Brown, Ganor, Helfgott '04) Kac-Moody-Eisenstein series (Fleig, Kleinschmidt, 12, 13)

A concrete case study (Damour, Spindel 2013, 2014, 2017)

- Quantum supersymmetric Bianchi IX, i.e. quantum dynamics of a supersymmetric triaxially squashed three-sphere: with squashing parameters $a=e^{-\beta^{1}}, \quad b=e^{-\beta^{2}}, \quad c=e^{-\beta^{3}}$

Susy Quantum Cosmology: Obregon et al ≥ 1990; D'Eath, Hawking, Obregon, 1993, D'Eath ≥ 1993, Csordas, Graham 1995, Moniz $\geq 94, \ldots$

Quantum susy Bianchi IX

Technically: Reduction to one, time-like, dimension of the action of $D=4$ simple supergravity for an SU(2)-homogeneous (Bianchi IX) cosmological model \rightarrow (essentially) Susy Quantum Mechanical model

$$
\begin{aligned}
g_{\mu \nu} d x^{\mu} d x^{\nu} & =-N^{2}(t) d t^{2} \\
& +g_{a b}(t)\left(\tau^{a}(x)+N^{a}(t) d t\right)\left(\tau^{b}(x)+N^{b}(t) d t\right),
\end{aligned}
$$

τ^{a} : left-invariant one-forms on $S U(2) \approx S_{3}: d \tau^{a}=\frac{1}{2} C_{b c}^{a} \tau^{b} \wedge \tau^{c}$; here $C_{b c}^{a}=\varepsilon_{a b c}$ plays the role of a nonabelian "gravitational flux", or constant momentum of (coset) dual graviton.

Dynamical degrees of freedom

- 6 bosonic dof: Gauss-decomposition of the metric: $g_{b c}=$ $\sum_{\widehat{a}=1}^{3} e^{-2 \beta^{a}} S^{\widehat{a}}{ }_{b}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) S^{\hat{a}}{ }_{c}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
$\beta^{a}=\left(\beta^{1}(t), \beta^{2}(t), \beta^{3}(t)\right)$ cologarithms of the squashing parameters a, b, c of 3 -sphere $a=e^{-\beta^{1}}, \quad b=e^{-\beta^{2}}, \quad c=e^{-\beta^{3}}$ and three Euler angles: $\varphi_{a}=\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right)$ parametrizing the orthogonal matrix S_{b}^{a}
- and 12 fermionic dof: Gravitino components in specific gaugefixed orthonormal frame $\theta^{\widehat{\alpha}}$ canonically associated with the Gaussdecomposition $\theta^{\widehat{0}}=N(t) d t, \theta^{\widehat{a}}=\sum_{b} e^{-\beta^{a}(t)} S^{\widehat{a}}{ }_{b}\left(\varphi_{c}(t)\right)\left(\tau^{b}(x)+N^{b}(t) d t\right)$
- redefinitions of the gravitino field:

$$
\Psi_{\hat{\alpha}}^{A}(t):=g^{1 / 4} \psi_{\hat{\alpha}}^{A} \quad \text { and } \quad \Phi_{A}^{a}:=\Sigma_{B} \gamma_{A B}^{\widehat{a}} \Psi_{\hat{a}}^{B} \quad \text { (no summation on } \hat{a} \text {) }
$$

- 3×4 gravitino components $\Phi_{A}^{a}, a=1,2,3 ; A=1,2,3,4$.

Supersymmetric action (first order form)

$$
S=\int d t\left[\pi_{a} \dot{\beta}^{a}+p_{\varphi^{a}} \dot{\varphi}^{a}+\frac{i}{2} G_{a b} \Phi_{A}^{a} \dot{\Phi}_{A}^{b}+\bar{\Psi}_{\hat{0}}^{\prime A} \mathcal{S}_{A}-\tilde{N} H-N^{a} H_{a}\right]
$$

$G_{a b}$: Lorentzian-signature quadratic form:

$$
G_{a b} d \beta^{a} d \beta^{b} \equiv \sum_{a}\left(d \beta^{a}\right)^{2}-\left(\sum_{a} d \beta^{a}\right)^{2}
$$

$G_{a b}$ defines the kinetic terms of the gravitino, as well as those of the β^{a} s:

$$
\frac{1}{2} G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}
$$

Lagrange multipliers \longrightarrow Constraints $\mathcal{S}_{A} \approx 0, H \approx 0, H_{a} \approx 0$

Quantization

- Bosonic dof:

$$
\widehat{\pi}_{a}=-i \frac{\partial}{\partial \beta^{a}} ; \quad \hat{p}_{\varphi_{a}}=-i \frac{\partial}{\partial \varphi_{a}}
$$

- Fermionic dof:

$$
\widehat{\Phi}_{A}^{a} \widehat{\Phi}_{B}^{b}+\widehat{\Phi}_{B}^{b} \widehat{\Phi}_{A}^{a}=G^{a b} \delta_{A B}
$$

This is the Clifford algebra $\operatorname{Spin}\left(8^{+}, 4^{-}\right)$

- The wave function of the universe $\Psi_{\sigma}\left(\beta^{a}, \varphi_{a}\right)$ is a 64-dimensional spinor of $\operatorname{Spin}(8,4)$ and the gravitino operators Φ_{A}^{a} are 64×64 "gamma matrices" acting on $\Psi_{\sigma}, \sigma=1, \ldots, 64$
- Crucially depends on the terms cubic and quartic in Fermions

Dirac Quantization of the Constraints

$$
\widehat{\mathcal{S}}_{A} \Psi=0, \quad \widehat{H} \Psi=0, \quad \widehat{H}_{a} \Psi=0
$$

Diffeomorphism constraint $\Leftrightarrow \hat{p}_{\varphi_{a}} \Psi=-i \frac{\partial}{\partial \varphi_{a}} \Psi=0$: "s wave" w.r.t. the Euler angles
\longrightarrow Wave function $\Psi\left(\beta^{a}\right)$ submitted to constraints

$$
\widehat{\mathcal{S}}_{A}(\widehat{\pi}, \beta, \widehat{\Phi}) \Psi(\beta)=0, \quad \widehat{H}(\widehat{\pi}, \beta, \widehat{\Phi}) \Psi(\beta)=0
$$

$\hat{\pi}_{a}=-i \frac{\partial}{\partial \beta^{a}} \Rightarrow 4 \times 64+64$ PDE's for the 64 functions $\Psi_{\sigma}\left(\beta^{1}, \beta^{2}, \beta^{3}\right)$
Heavily overdetermined system of PDE's, but consistent by susy:

$$
\widehat{\mathcal{S}}_{A} \widehat{\mathcal{S}}_{B}+\widehat{\mathcal{S}}_{B} \widehat{\mathcal{S}}_{A}=4 i \sum_{C} \widehat{L}_{A B}^{C}(\beta) \widehat{\mathcal{S}}_{C}+\frac{1}{2} \widehat{H} \delta_{A B}
$$

Explicit form of the SUSY constraints $\left(\gamma^{5} \equiv \gamma^{0 \uparrow र \imath 2 \widehat{3}}, \beta_{12} \equiv \beta^{1}-\beta^{2}, \widehat{\Phi}^{12} \equiv \widehat{\Phi}^{1}-\widehat{\Phi}^{2}\right)$

$$
\begin{aligned}
\widehat{\mathcal{S}}_{A} & =-\frac{1}{2} \sum_{a} \widehat{\pi}_{a} \Phi_{A}^{a}+\frac{1}{2} \sum_{a} e^{-2 \beta^{a}}\left(\gamma^{5} \Phi^{a}\right)_{A} \\
& -\frac{1}{8} \operatorname{coth} \beta_{12}\left(\widehat{S}_{12}\left(\gamma^{12} \widehat{\Phi}^{12}\right)_{A}+\left(\gamma^{12} \widehat{\Phi}^{12}\right)_{A} \widehat{S}_{12}\right) \\
& +\operatorname{cyclic}_{(123)}+\frac{1}{2}\left(\widehat{\mathcal{S}}_{A}^{\text {cubic }}+\widehat{\mathcal{S}}_{A}^{\text {cubic } \dagger}\right)
\end{aligned}
$$

$$
\begin{aligned}
\widehat{S}_{12}(\widehat{\Phi}) & =\frac{1}{2}\left[\left(\overline{\tilde{\Phi}}^{3} \gamma^{\hat{0} \hat{1} \hat{2}}\left(\widehat{\Phi}^{1}+\widehat{\Phi}^{2}\right)\right)+\left(\overline{\bar{\Phi}}^{1} \gamma^{\hat{1} \hat{\imath} \hat{\Phi}} \widehat{\Phi}^{1}\right)\right. \\
& \left.+\left(\overline{\bar{\Phi}}^{2} \gamma^{0} \hat{1} \hat{\imath} \widehat{\Phi}^{2}\right)-\left(\overline{\bar{\Phi}}^{1} \gamma^{\hat{0} \hat{1} \hat{2}} \widehat{\Phi}^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{\mathcal{S}}_{A}^{\text {cubic }} & =\frac{1}{4} \sum_{a}\left(\overline{\tilde{\Psi}}_{0}, \gamma^{0} \widehat{\Psi}_{\widehat{a}}\right) \gamma^{\widehat{0}} \widehat{\Psi}_{\widehat{a}}^{A}-\frac{1}{8} \sum_{a, b}\left(\overline{\hat{\Psi}}_{\widehat{a}} \gamma^{\hat{0}} \widehat{\Psi}_{\widehat{b}}\right) \gamma^{\widehat{a}} \widehat{\Psi}_{\hat{b}}^{A} \\
& +\frac{1}{8} \sum_{a, b}\left(\overline{\hat{\Psi}}_{0}, \gamma^{\hat{a}} \Psi_{\widehat{b}}\right)\left(\gamma^{\widehat{a}} \Psi_{\widehat{b}}^{A}+\gamma^{\widehat{b}} \Psi_{\widehat{a}}^{A}\right),
\end{aligned}
$$

$A E_{3}=A_{1}^{++}$linked to $a=e^{-\beta^{1}}, b=e^{-\beta^{2}}, c=e^{-\beta^{3}}$
Cartan matrix of $A E_{3}:\left(A_{i j}\right)=\left(\begin{array}{ccc}2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$
3-dimensional Lorentzian-signature space: metric in Cartan sub-algebra

$$
G_{a b} d \beta^{a} d \beta^{b}=\sum_{a}\left(d \beta^{a}\right)^{2}-\left(\sum_{a} d \beta^{a}\right)^{2}
$$

Simple roots linked to symmetry and gravitational walls

$$
\alpha_{12}=\beta^{2}-\beta^{1} ; \alpha_{23}=\beta^{3}-\beta^{2} ; \alpha_{11}=2 \beta^{1}
$$

Kac-Moody Structures Hidden in the Quantum Hamiltonian

$2 \widehat{H}=G^{a b}\left(\widehat{\pi}_{a}+i A_{a}\right)\left(\widehat{\pi}_{b}+i A_{b}\right)+\widehat{\mu}^{2}+W_{g}^{\text {bos }}(\beta)+\widehat{W}_{g}^{\text {spin }}(\beta)+\widehat{W}_{\text {sym }}^{\text {spin }}(\beta)$.
$G_{a b} \leftrightarrow$ metric in Cartan subalgebra of $A E_{3}$

$$
\begin{gathered}
W_{g}^{\text {bos }}(\beta)=\frac{1}{2} e^{-2 \alpha_{11}^{g}(\beta)}-e^{-2 \alpha_{23}^{g}(\beta)}+\operatorname{cyclic}_{123} \\
\widehat{W}_{g}^{\text {spin }}(\beta, \widehat{\Phi})=e^{-\alpha_{11}^{g}(\beta)} \widehat{\jmath}_{11}(\widehat{\Phi})+e^{-\alpha_{22}^{g}(\beta)} \widehat{\jmath}_{22}(\widehat{\Phi})+e^{-\alpha_{33}^{g}(\beta)} \widehat{\jmath}_{33}(\widehat{\Phi}) .
\end{gathered}
$$

Linear forms $\alpha_{a b}^{g}(\beta)=\beta^{a}+\beta^{b} \Leftrightarrow$ six level-1 roots of $A E_{3}$

$$
\widehat{W}_{\text {sym }}^{\text {spin }}(\beta)=\frac{1}{2} \frac{\left(\widehat{S}_{12}(\widehat{\Phi})\right)^{2}-1}{\sinh ^{2} \alpha_{12}^{\text {sym }}(\beta)}+\operatorname{cyclic}_{123},
$$

Linear forms $\alpha_{12}^{\text {sym }}(\beta)=\beta^{1}-\beta^{2}, \alpha_{23}^{\text {sym }}(\beta)=\beta^{2}-\beta^{3}, \alpha_{31}^{\text {sym }}(\beta)=\beta^{3}-\beta^{1}$ \Leftrightarrow three level-0 roots of $A E_{3}$

Spin dependent (Clifford) Operators coupled to $A E_{3}$ roots

$$
\begin{aligned}
\hat{S}_{12}(\widehat{\Phi}) & =\frac{1}{2}\left[\left(\widehat{\Phi}^{3} \gamma^{\hat{0} \hat{2} \hat{(}}\left(\widehat{\Phi}^{1}+\widehat{\Phi}^{2}\right)\right)+\left(\widehat{\Phi}^{1} \gamma^{\hat{0} \hat{2} \hat{\Phi}} \widehat{\Phi}^{1}\right)\right. \\
& \left.+\left(\bar{\Phi}^{2} \gamma^{\hat{0} \hat{1} \hat{2}} \widehat{\Phi}^{2}\right)-\left(\bar{\Phi}^{1} \gamma^{\hat{1} \hat{1} \hat{2}} \widehat{\Phi}^{2}\right)\right],
\end{aligned}
$$

$$
\widehat{J}_{11}(\widehat{\Phi})=\frac{1}{2}\left[\bar{\Phi}^{1} \gamma^{\uparrow \hat{\imath} \hat{3}}\left(4 \widehat{\Phi}^{1}+\widehat{\Phi}^{2}+\widehat{\Phi}^{3}\right)+\bar{\Phi}^{2} \gamma^{\hat{\imath} \hat{\imath} \hat{\Phi}} \widehat{\Phi}^{3}\right] .
$$

- $\hat{S}_{12}, \hat{S}_{23}, \hat{S}_{31}, \widehat{J}_{11}, \widehat{J}_{22}, \widehat{J}_{33}$ generate (via commutators) a 64dimensional representation of the (infinite-dimensional) "maximally compact" sub-algebra $K\left(A E_{3}\right) \subset A E_{3}$. [The fixed set of the (linear) Chevalley involution, $\omega\left(\boldsymbol{e}_{i}\right)=-f_{i}, \omega\left(f_{i}\right)=-\boldsymbol{e}_{i}, \omega\left(h_{i}\right)=-h_{i}$, which is generated by $x_{i}=e_{i}-f_{i}$]

The "squared-mass" Quartic Operator $\widehat{\mu}^{2}$ in \widehat{H}

In the middle of the Weyl chamber (far from all the hyperplanes $\alpha_{i}(\beta)=0$):

$$
2 \widehat{H} \simeq \widehat{\pi}^{2}+\widehat{\mu}^{2}
$$

where $\widehat{\mu}^{2} \sim \sum \widehat{\Phi}^{4}$ gathers many complicated quartic-in-fermions terms (including $\sum \widehat{S}_{a b}^{2}$ and the infamous ψ^{4} terms of supergravity).

Remarkable Kac-Moody-related facts:

- $\widehat{\mu}^{2}$ commutes with the $K\left(A E_{3}\right)$ generators $\widehat{S}_{a b}, \widehat{J}_{a b}$
- $\widehat{\mu}^{2}$ is \sim the square of a very simple operator \in Center

$$
\widehat{\mu}^{2}=\frac{1}{2}-\frac{7}{8} \widehat{C}_{F}^{2}
$$

where $\widehat{C}_{F}:=\frac{1}{2} G_{a b} \overline{\Phi^{a}} \gamma^{\hat{\imath} \hat{\imath} \hat{3}} \widehat{\Phi}^{b}$.

Solutions of SUSY constraints

Overdetermined system of four 64-component Dirac-like equations
$\widehat{\mathcal{S}}_{A} \Psi=\left(\frac{i}{2} \Phi_{A}^{a} \frac{\partial}{\partial \beta^{a}}+U(\beta) \Phi \Phi \Phi\right) \Psi=0$

Space of solutions is a mixture of "discrete-spectrum states" and "continuous-spectrum states", depending on fermion number $N_{F}=$ $C_{F}-3 . \exists$ solutions for both even and odd N_{F}.
\exists continuous-spectrum states (parametrized by initial data comprising arbitrary functions) at $C_{F}=-1,0,+1$.

Completion of inconclusive studies started long ago: D'Eath 93, D'Eath-Hawking-Obregon 93, Csordas-Graham 95, Obregon 98, ...

Solution space of quantum susy Bianchi IX: $N_{F}=0$

Level $N_{F}=0: \exists$ unique "ground state" $|f\rangle=C f_{0}(\beta)|0\rangle_{-}$with

$$
f_{0}(\beta)=a b c\left[\left(b^{2}-a^{2}\right)\left(c^{2}-b^{2}\right)\left(c^{2}-a^{2}\right)\right]^{3 / 8} e^{-\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)}|0\rangle_{-}
$$

This "ground state" is localized in the middle of β space (or of a Weyl chamber) and decays in all directions in β space: small volume, large volume, large anisotropies. It describes a quantum universe which oscillates in shape and size, but stays of Planckian size
\exists similar "discrete-spectrum" states at $N_{F}=1,2,4,5,6$; however, it is only at levels $N_{F}=0$ and 1 that these states decay in all directions and are square integrable at the symmetry walls.

Continuous-spectrum solutions at $N_{F}=2,3,4$: Quantum Supersymmetric Billiard

At $N_{F}=2, \exists$ solutions of the type $k_{(a b)}(\beta) \tilde{b}_{+}^{a} \tilde{b}_{-}^{b}|0\rangle_{-}$with a symmetric $k_{a b}(\beta)=f_{(a b)}^{+-}(\beta)$, with 6 components, that satisfies Maxwell-type equations in β space similar to $\delta k \sim 0, d k \sim 0$.

The spinorial wave function of the universe $\Psi\left(\beta^{a}\right)$ propagates within the (various) Weyl chamber(s) and "reflects" on the walls (= simple roots of $A E_{3}$). In the small-wavelength limit, the "reflection operators" define a spinorial extension of the Weyl group of $A E_{3}$ (Damour Hillmann 09) defined within some subspaces of $\operatorname{Spin}(8,4)$

$$
\widehat{\mathcal{R}}_{\alpha_{i}}=\exp \left(-i \frac{\pi}{2} \widehat{\varepsilon}_{\alpha_{i}} \widehat{J}_{\alpha_{i}}\right)
$$

with
$\widehat{J}_{\alpha_{i}}=\left\{\widehat{S}_{23}, \widehat{S}_{31}, \widehat{J}_{11}\right\}$ and $\widehat{\varepsilon}_{\alpha_{i}}^{2}=\mathrm{Id}$

Hidden Kac-Moody structure of the spinor reflection operators

Dynamically computed reflection operators:

$$
\begin{aligned}
\mathcal{R}_{\alpha_{23}}^{\mathbf{6}, N_{F}=2, W K B} & =e^{-\frac{i \pi}{2}} e^{ \pm \frac{i \pi}{2}\left|\widehat{S}_{23}\right|_{6, N_{F}}=2} \\
\mathcal{R}_{\alpha_{12}}^{6, N_{F}=2, W K B} & =e^{-\frac{i \pi}{2}} e^{ \pm \frac{i \pi}{2}\left|\widehat{S}_{12}\right|_{6, N_{F}=2}}, \\
\mathcal{R}_{\alpha_{11}}^{6, N_{F}=2} & =e^{-i \frac{\pi}{2}} e^{-i \frac{\pi}{2} \widehat{\mathcal{J}}_{11} \mathbf{6}, N_{F}=2}
\end{aligned}
$$

The $\mathcal{R}_{\alpha_{i}}$'s satisfy generalized Coxeter relations characteristic of spin-extended Weyl groups (Ghatei, Horn, Köhl, Weiss, 2016)

$$
r_{i}^{8}=1
$$

$r_{i} r_{j} r_{i} \cdots=r_{j} r_{i} r_{j} \ldots$ "braid" relations with $m_{i j}$ factors on each side.

$$
r_{j}^{-1} r_{i}^{2} r_{j}=r_{i}^{2} r_{j}^{2 n_{i j}}
$$

with some (precisely defined) integers $m_{i j}$ and $n_{i j}$.

Fermions and their dominance near the singularity

Crucial issue of boundary condition near a big bang or big crunch or black hole singularity: DeWitt 67, Vilenkin 82 ..., Hartle-Hawking 83 ...,, Horowitz-Maldacena 03

Finding in Bianchi IX SUGRA: the WDW squared-mass term $\hat{\mu}^{2}$ is negative (i.e. tachyonic) in most of the Hilbert space (44 among 64).

$$
\begin{equation*}
\mu^{2}=\left(-\left.\frac{59}{8}\right|_{0} ^{1},-\left.3\right|_{1} ^{6},-\left.\frac{3}{8}\right|_{2} ^{15},+\left.\frac{1}{2}\right|_{3} ^{20},-\left.\frac{3}{8}\right|_{4} ^{15},-\left.3\right|_{5} ^{6},-\left.\frac{59}{8}\right|_{6} ^{1}\right) \tag{1}
\end{equation*}
$$

This is a quantum effect quartic in fermions:

$$
\rho_{4} \sim \psi^{4} \sim \mu^{2}\left(\mathcal{V}_{3}\right)^{-2}=\mu^{2}(a b c)^{-2}=\mu^{2} \bar{a}^{-6}
$$

which dominates the other contributions near a small volume singularity

Bouncing Universes and Quantum Boundary Conditions at a Spacelike Singularity ?

A "stiff", $\rho_{4}=p_{4}$, negative $\rho_{4}<0$ contribution classically leads to an avoidance of a singularity, i.e. a bounce of the universe. This bounce is exemplified by the $N_{F}=0$ "ground state"
$\left.\Psi_{0}=(a b c)\left[\left(b^{2}-a^{2}\right)\left(c^{2}-b^{2}\right)\left(c^{2}-a^{2}\right)\right]^{3 / 8} e^{-\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)} \right\rvert\, 0$
Quantum mechanically, the general solution of the WDW equation (in "hyperbolic polar coordinates" $\beta^{a}=\rho \gamma^{a}$)

$$
\left(\frac{1}{\rho} \partial_{\rho}^{2} \rho-\frac{1}{\rho^{2}} \Delta_{\gamma}+\hat{\mu}^{2}\right) \Psi^{\prime}\left(\rho, \gamma^{a}\right)=0
$$

behaves, after a quantum-billiard mode-expansion $\Psi^{\prime}\left(\rho, \gamma^{a}\right)=\sum_{n} R_{n}(\rho) Y_{n}\left(\gamma^{a}\right)$, as

$$
\rho R_{n}(\rho) \equiv u_{n}(\rho) \approx a_{n} e^{-|\mu| \rho}+b_{n} e^{+|\mu| \rho}, \text { as } \rho \rightarrow+\infty
$$

This suggests to impose the boundary condition $\Psi^{\prime} \sim e^{-|\mu| \rho} \rightarrow 0$ at the singularity, which is, for a black hole crunch, a type of "final-state" boundary condition (à la Horowitz-Maldacena), which would represent a quantum avoidance of the singularity ?

Conclusions

- The dynamics of gravity near a cosmological singularity is chaotic and equivalent to billiard motion in the Weyl chamber of an hyperbolic Kac-Moody algebra.
- The evidence for a hidden Kac-Moody structure goes much beyond the billiard limit (both in bosonic and fermionic EOM and in classical/quantum effects). It suggests a gravity/coset correspondence: gravity dynamics \leftrightarrow massless particle on infinite-dimensional (Lorentzian-signature) Kac-Moody coset G/K.
- The case study of the quantum dynamics of a triaxially squashed 3-sphere (Bianchi IX model) in (simple, $D=4$) supergravity confirms the hidden presence of hyperbolic Kac-Moody structures $\left(A E_{3}\right.$ and $\left.K\left(A E_{3}\right)\right)$ in supergravity, especially in the fermionic sector.
- Quartic terms in the gravitino might lead to a quantum avoidance of the singularity.
- The largest hyperbolic Kac-Moody algebra E_{10} seems to play an important, though still mysterious, role in SUGRA ${ }_{11}$.

