Fearful Symmetry

- $\mathrm{N}=8$ Supergravity
- d=4: E_{7} duality symmetry; scalars in $E_{7} / S U(8)$
- E_{11-d} exceptional duality symmetry in d dimensions
- Scalar fields in E_{11-d} / H_{11-d}

What immortal hand or eye,
 Could frame thy fearful symmetry?

William Blake

BJ's vote

- T-duality and nongeometric or generalized geometric spacetimes
- Non standard metric signatures
- Non commutative geometry
- NUT charge and gravitational duality

BJ's vote

- T-duality and nongeometric or generalized geometric spacetimes
- Non standard metric signatures

Symmetry and Geometry

Nipol Chaemjumrus and CH:
[arXiv:1907.04040] Degenerations of K3, Orientifolds and Exotic Branes
[arXiv:1908.04623] Special Holonomy Manifolds, Domain Walls, Intersecting Branes and T-folds
[arXiv:1909.12348] The Doubled Geometry of Nilmanifold Reductions

Perturbative String Theory

- Strings moving in spacetime manifold, coupled to background fields: Non-linear Sigma Model
- Quantum σ-model: must define a conformal field theory
- Different backgrounds can define same CFT: SYMMETRY
- Diffeomorphisms: Spaces related by diffeos
- T-duality: Circles of radius R and 1/R, Torus fibrations
- Mirror symmetry: Mirror Calabi-Yau spaces

Stringy Symmetries

- Mirror symmetry, T-duality: relate different geometries and topologies. Symmeties for special backgrounds only
- Can replace σ-model with any CFT (with right c) fermions, parafermions, tri-critical Potts model,...
- "Non-geometric": no interpretation as strings moving in spacetime
- Same CFT can have dual formulations

Torus σ-model \leftrightarrow Group manifold σ-model \leftrightarrow Fermion model
Arena: \quad Spacetimes \rightarrow CFTs
"Field theory"on space of CFTs?

Non-Perturbative Symmetries

- String theory on torus: non-perturbative symmetry
- Cremmer-Julia symmetry E_{11-d} broken to discrete U-duality $E_{11-d}(\mathbb{Z})$, exact symmetry of non-perturbative quantum theory
- Relates strings to branes, so lose picture of strings in a background.
- M-theory: no fundamental formulation; Cremmer-Julia-Scherk 11-d supergravity is low energy effective theory
- What is generalisation of CFTs?

Dualities between String Theories

IIA on S^{1}, radius R \leftrightarrow IIB on dual S^{1}, radius $1 / \mathrm{R}$

IIA on $\mathrm{CY}_{3} \leftrightarrow$ IIB on mirror CY_{3}

IIA on K3 \leftrightarrow Heterotic on T4

Various superstring theories different perturbation expansions of same fundamental theory

Timelike Reductions

CH+Julia

- Compactify D=11 SUGRA on spatial torus: E_{11-d} / H_{11-d}
- Compactify on time and a spatial torus: supergravity in d Euclidean dimensions, E_{11-d} / H_{11-d}^{*}
- d=4: $E_{7} / S U(8) \rightarrow E_{7} / S U^{*}(8)$
- d=3: $E_{8} / S O(16) \rightarrow E_{8} / S O *(16)$
- Useful for e.g. seeking stationary solutions
- Mixed signature $E_{11-d} / H_{11-d}^{*}, E_{11-d}(\mathbb{Z})$ has ergodic action

Compactify Strings/M on Lorentzian Torus?

Compactify on Lorentzian torus, including timelike circle

Periodic time in quantum theory?
Can solve Schrodinger or Klein-Gordon equines with periodic time

Quantum theory? Interpretation? Probability? Collapse of wave-function?
Proceed formally (same Euclidean funtional integral etc), see what happens
Find dualities that can change signature

Theory X on spacelike S^{1}, radius R

Theory Y on timelike S^{1}, radius 1/R

Exotic Signatures

- Timelike dualities generate string theories in ALL 10-d signatures
- 11-d theories in signatures $(10,1),(9,2),(6,5)$
- Consistent supergravities in each of these signatures
- If times compact, dual to usual theories with timelike circles
- Negative branes: interpolate between regions of different signatures

Many Worlds

- Many solutions: 11-d Minkowski, CYxMinkowski, AdS7xS4, Susy Godel, T^{11}, exotic signatures,...
- Our region of the universe is in (at most!) one of them
- Most would give very different physics. Almost all not "used"
- Our region has 3 space and one time as macroscopic dimensions, and the internal space probably has no times
- There could be other regions of the universe which are very different.

Symmetry and Geometry

- Spacetime constructed from local patches
- All symmetries can be used in patching
- String theory: S,T,U symmetries on torus, mirror symmetry on Calabi-Yau
- Use duality patching for local torus or CY fibrations: non-geometric
- T-FOLDS, S-FOLDS, U-FOLDS, MIRROR-FOLDS

T-fold patching

Glue big circle (R) to small (I/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding)
Not conventional smooth geometry

T-fold patching

Glue big circle (R) to small (I/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding) Not conventional smooth geometry

Torus fibration

T-fold:Transition functions involve T-dualities

$$
\mathrm{E}=\mathrm{G}+\mathrm{B} \text { Non-tensorial }
$$

$O(d, d ; \mathbb{Z}) \quad E^{\prime}=(a E+b)(c E+d)^{-1}$ in $U \cap U^{\prime}$
Glue using T-dualities also \rightarrow T-fold Physics smooth, as T-duality a symmetry

T-fold:Transition functions involve T-dualities

$$
\mathrm{E}=\mathrm{G}+\mathrm{B} \text { Non-tensorial }
$$

$O(d, d ; \mathbb{Z}) \quad E^{\prime}=(a E+b)(c E+d)^{-1}$ in $U \cap U^{\prime}$
Glue using T-dualities also \rightarrow T-fold Physics smooth, as T-duality a symmetry

Should think of as bundle of torus CFTs over base
From quantising fibre coordinates. Intermediate stage before quantising base.

Compactification with Duality Twist

Simple case: bundle of torus CFTs fibred over a circle
Stringy version of Scherk-Schwarz
Monodromy in Duality group $O(d, d ; \mathbb{Z})$
e.g. $d=2: S L(2, \mathbb{Z}) \times S L(2, \mathbb{Z})$ acting on $\tau, \rho=B+i A$

T² Fibred over S 1

3-torus with flux, $\mathrm{H}=\mathrm{m} \times \mathrm{Vol}$

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2} \quad B=m x d y \wedge d z
$$

Monodromy: $\rho \rightarrow \rho+m$

T² Fibred over S 1

3-torus with flux, $\mathrm{H}=\mathrm{m} \times \mathrm{Vol}$

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2} \quad B=m x d y \wedge d z
$$

Monodromy: $\rho \rightarrow \rho+m$
Nilfold $\quad S^{1}$ Bundle over T^{2}

$$
d s_{\mathcal{N}}^{2}=d x^{2}+(d y+m x d z)^{2}+d z^{2}
$$

Monodromy: $\tau \rightarrow \tau+m$

T² Fibred over S1

3-torus with flux, $\mathrm{H}=\mathrm{m} \times$ Vol

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2} \quad B=m x d y \wedge d z
$$

Monodromy: $\rho \rightarrow \rho+m$
Nilfold $\quad S^{1}$ Bundle over T^{2}

$$
d s_{\mathcal{N}}^{2}=d x^{2}+(d y+m x d z)^{2}+d z^{2}
$$

Monodromy: $\tau \rightarrow \tau+m$

T-fold T² fibration over S1, T-duality monodromy

$$
\begin{aligned}
& d s_{\mathrm{T}-\text { Fold }}^{2}=d x^{2}+\frac{1}{1+(m x)^{2}}\left(d y^{2}+d z^{2}\right) \quad B=\frac{m x}{1+(m x)^{2}} d y \wedge d z \\
& \text { Monodromy: } \rho \rightarrow \frac{\rho}{1+m \rho}
\end{aligned}
$$

String solutions

- None of these are solutions of string theory
- Can find bundle solutions in which these are fibres
- Duality then acts fibre wise
- Simplest case: fibre over a line
- Nilfold fibred over a line: hyperkahler

CH
Gibbons +Rychenkova
Lavrinenko, Lu, Pope

Gibbons-Hawking Metric

Hyperkahler metric with S^{1} symmetry

$$
g=V\left(d \tau^{2}+d x^{2}+d z^{2}\right)+V^{-1}(d y+\omega)^{2}
$$

$V(\tau, x, z)$ a harmonic function on \mathbb{R}^{3}

$$
\vec{\nabla} \times \vec{\omega}=\vec{\nabla} V
$$

Delta-function sources at points (m an integer)

$$
V=a+\sum_{i} \frac{m}{\left|\vec{r}-\vec{r}_{i}\right|}
$$

S1 Bundle on \mathbb{R}^{3} - \{points $\}$
Regular at sources if $m=1$: multi-Taub-NUT
Orbifold singularities for $m>1$

Smeared GH Metrics

$V(\tau, x, z)$ a harmonic function on \mathbb{R}^{3}
"Smeared" solutions: V independent of one or more coordinates

Can then take those coordinates to be periodic Metric typically singular

Smear on $\mathrm{x}, \mathrm{y}: \quad V(\tau)=m \tau+c$

$$
\text { or } \quad V(\tau)= \begin{cases}c+m^{\prime} \tau, & \tau \leq 0 \\ c+m \tau, & \tau>0 .\end{cases}
$$

Singular at kink at $\tau=0$

Domain wall: 2-plane dividing space into 2 parts
$N=m-m$ ': energy density (tension) of domain wall (2-brane)

Smeared GH \& Nilfolds

$$
d s^{2}=V(\tau)\left(d \tau^{2}+d x^{2}+d z^{2}\right)+\frac{1}{V(\tau)}(d y+m x d z)^{2} \quad V(\tau)=m \tau+c
$$

Take x, y, z periodic
Fixed τ : nilfold

$$
d s_{\mathcal{N}}^{2}=d x^{2}+(d y+m x d z)^{2}+d z^{2}
$$

S^{1} Bundle over T^{2}

$$
F=m d x \wedge d z \quad \text { Degree } \quad m \in \mathbb{Z}
$$

Quotient of the group manifold of the Heisenberg group by a cocompact discrete subgroup

4-d space: nilfold fibred over a line
Wall: jump in degree m

Smeared GH \& Nilfolds

$$
d s^{2}=V(\tau)\left(d \tau^{2}+d x^{2}+d z^{2}\right)+\frac{1}{V(\tau)}(d y+m x d z)^{2} \quad V(\tau)=m \tau+c
$$

Take $\mathrm{x}, \mathrm{y}, \mathrm{z}$ periodic
Fixed τ : nilfold

$$
d s_{\mathcal{N}}^{2}=d x^{2}+(d y+m x d z)^{2}+d z^{2}
$$

S^{1} Bundle over T^{2}

$$
F=m d x \wedge d z \quad \text { Degree } \quad m \in \mathbb{Z}
$$

Quotient of the group manifold of the Heisenberg group by a cocompact discrete subgroup

4-d space: nilfold fibred over a line
Wall: jump in degree m
String solution: product with $\mathbb{R}^{1,5}$. Smeared KK monopole

T-duality

Nilfold fibred over line
$\rightarrow T^{3}$ with H-flux fibred over line
\Rightarrow T-fold fibred over line

String solution: product with $\mathbb{R}^{1,5}$.

Smeared KK monopole

Smeared NS5-brane

Smeared 52 Exotic Brane

NS5-brane: transverse space \mathbb{R}^{4}
Smeared NS5-brane: transverse space $\mathbb{R} \times T^{3}$
Smeared on T^{3}

Multi-domain wall solutions

V Piecewise linear: multi-wall solution with domain walls at $\tau=\tau_{1}, \tau_{2}, \ldots \tau_{n}$

$$
V(\tau)= \begin{cases}c_{1}+m_{1} \tau, & \tau \leq \tau_{1} \\ c_{2}+m_{2} \tau, & \tau_{1}<\tau \leq \tau_{2} \\ \vdots & \\ c_{n}+m_{n} \tau, & \tau_{n-1}<\tau \leq \tau_{n} \\ c_{n+1}+m_{n+1} \tau, & \tau>\tau_{n}\end{cases}
$$

The charge of the domain wall at τ_{r} is the integer

$$
N_{r}=m_{r+1}-m_{r}
$$

e.g. GH: $\quad d s^{2}=V(\tau)\left(d \tau^{2}+d x^{2}+d z^{2}\right)+\frac{1}{V(\tau)}(d y+M(\tau) x d z)^{2} \quad M(\tau) \equiv V^{\prime}(\tau)$

Can take x, y, z periodic

Single-sided domain wall

$$
V=c+m|\tau|
$$

Quotient by reflection $\tau \rightarrow-\tau$ gives
"single-sided" wall at $\tau=0$

Not consistent string backgrounds

- Hyperkahler space + duals give CFTs away from walls
- Domain walls singular
- Linear dilaton and V blow up unless end with single-sided walls
- Need negative brane charges to give net charge zero

Dualities: Singular Solns

Smeared KK Monopole

NS5-brane Smeared on T^{3}

D8-brane Wrapped on T^{3}

Nilfold fibred over line
T^{3} with flux fibred over line

D8-brane: domain wall in 9+1 dimensions

- D8-brane: string background needs orientifold planes
- Singularities at walls: reflect presence of physical objects (D8-branes)
- Type I' string: 16 D8-branes and 2 O8-planes
- Dualise to get consistent backgrounds for nilfold, T-fold and T3 with H-flux with duals of O8-planes. How are singularities resolved?

Type I' String Theory

Interval $\times \mathbb{R}^{1,8}$
16 D8-branes of charge 1: N_{i} branes at points τ_{i} on interval
Orientifold 8-planes of charge -8 at end-points $\tau=0, \pi$

$$
\begin{gathered}
d s^{2}=V^{-1 / 2} d s^{2}\left(\mathbb{R}^{1,8}\right)+V^{1 / 2} d \tau^{2} \quad V(\tau)= \begin{cases}c_{1}+m_{1} \tau, & 0 \leq \tau \leq \tau_{1} \\
c_{2}+m_{2} \tau, & \tau_{1}<\tau \leq \tau_{2} \\
\vdots & \\
c_{n}+m_{n} \tau, & \tau_{n-1}<\tau \leq \tau_{n} \\
c_{n+1}+m_{n+1} \tau, & \tau_{n}<\tau \leq \pi\end{cases} \\
N_{i}=m_{i+1}-m_{i} \quad \sum_{i=1}^{n} N_{i}=16
\end{gathered}
$$

Or, if at $\tau=0$ there are N_{-}branes giving charge $b_{-}=-8+N_{-}$ and if at $\tau=\pi$ there are N_{+}branes giving charge $b_{+}=-8+N_{+}$

$$
\begin{gathered}
b_{-}=-m_{1}, b_{+}=m_{n+1} \quad 0 \leq b_{ \pm} \leq 8 \\
\sum_{i=1}^{n} N_{i}=b_{-}+b_{+} \leq 16
\end{gathered}
$$

Dualise Type I'

- Dualise supergravity solution wrapped on T^{3} to get smeared GH and NS5 with same potential V on interval
- 16 sources: KK monopole or NS5-brane smeared over T^{3}
- Smeared KK, NS5 singular. How are singularities resolved?
- At ends of interval: duals of O8 planes.
- Orientifold analogues of KK monopoles and $(5,2)$ branes?

$$
\begin{aligned}
& D 8 \xrightarrow{T} D 5 \xrightarrow{S} \text { NS5 } \xrightarrow{T} K K \xrightarrow{T}(5,2) \\
& O 8 \xrightarrow{T} O 5 \xrightarrow{S} O N \xrightarrow{T} ? ? \xrightarrow{T} ? ?
\end{aligned}
$$

String theory

To address these issues, look at full string theory and dualities
Type I' string on $S^{1} / \mathbb{Z}_{2} \times \mathbb{R}^{1,8} \longrightarrow$ Type I string on $S^{1} \times \mathbb{R}^{1,8}$

Type I' string on $S^{1} / \mathbb{Z}_{2} \times T^{3} \times \mathbb{R}^{1,5} \longrightarrow$ Type I string on $T^{4} \times \mathbb{R}^{1,5}$

$$
D 9 \xrightarrow{T} D 8 \xrightarrow{T} D 5 \xrightarrow{S} N S 5 \xrightarrow{T} K K
$$

$$
\mathrm{I} \equiv \frac{\mathrm{IIB}}{\Omega} \xrightarrow{\mathrm{~T}_{9}} \mathrm{I}^{\prime} \equiv \frac{\text { IIA }}{\Omega \mathrm{R}_{9}} \xrightarrow{\mathrm{~T}_{678}} \frac{\text { IIB }}{\Omega \mathrm{R}_{6789}} \xrightarrow{\mathrm{~s}} \frac{\text { IIB }}{(-1)^{\mathrm{F}_{\mathrm{L}} \mathrm{R}_{6789}}} \xrightarrow{\mathrm{~T}_{6}} \frac{\text { IIA }}{\mathrm{R}_{6789}}
$$

string theory

To address these issues, look at full string theory and dualities Type I' string on $S^{1} / \mathbb{Z}_{2} \times \mathbb{R}^{1,8} \longrightarrow$ Type I string on $S^{1} \times \mathbb{R}^{1,8}$

Type I' string on $S^{1} / \mathbb{Z}_{2} \times T^{3} \times \mathbb{R}^{1,5} \longrightarrow$ Type I string on $T^{4} \times \mathbb{R}^{1,5}$

$$
\begin{gathered}
D 9 \xrightarrow{T} D 8 \xrightarrow{T} D 5 \xrightarrow{s} N S 5 \xrightarrow{T} K K \\
\mathrm{I} \equiv \frac{\mathrm{IIB}}{\Omega} \xrightarrow{\mathrm{~T}_{9}} \mathrm{I}^{\prime} \equiv \frac{\mathrm{IIA}}{\Omega \mathrm{R}_{9}} \xrightarrow{\mathrm{~T}_{678}} \frac{\mathrm{IIB}}{\Omega \mathrm{R}_{6789}} \xrightarrow{\mathrm{~S}} \frac{\mathrm{IIB}}{(-1)^{\mathrm{F}_{\mathrm{L}} \mathrm{R}_{6789}}} \xrightarrow{\mathrm{~T}_{6}} \frac{\mathrm{IIA}}{\mathrm{R}_{6789}}
\end{gathered}
$$

Last step gives IIA on T^{4} / \mathbb{Z}_{2}, orbifold limit of K3
Duality between heterotic/type I on T^{4} and IIA on K3 from T\&S dualities

Orientifolds

$$
\begin{gathered}
\mathrm{I} \equiv \frac{\mathrm{IIB}}{\Omega} \xrightarrow{\mathrm{~T}_{9}} \mathrm{I}^{\prime} \equiv \frac{\mathrm{IIA}}{\Omega \mathrm{R}_{9}} \xrightarrow{\mathrm{~T}_{678}} \frac{\mathrm{IIB}}{\Omega \mathrm{R}_{6789}} \xrightarrow{\mathrm{~S}} \frac{\mathrm{IIB}}{(-1)^{\mathrm{F}_{\mathrm{L}} \mathrm{R}_{6789}}} \xrightarrow{\mathrm{~T}_{6}} \frac{\mathrm{IIA}}{\mathrm{R}_{6789}} \\
D 9 \xrightarrow{T} D 8 \xrightarrow{T} D 5 \xrightarrow{s} N S 5 \xrightarrow{T} K K
\end{gathered}
$$

Branes \rightarrow gravitational solitons

$$
\text { O9 } \rightarrow 2 \text { O8's } \rightarrow 16 \text { O5's } \rightarrow 16 \text { ON's } \rightarrow \text { ? }
$$

Smooth geometric dual to orientifolds?

Dualising Supergravity Soln with D8's to one with KK monopoles:

Space which is nilfold fibred over line, with smeared KK monopoles
Ends of line: geometric dual of orientifold planes

Dualising Type l' string
Same dualities take I' on T^{3} to IIA on K3
"Predicts" a region of K3 moduli space where the K3 looks like a nilfold fibred over a line interval with 16 KK monopole insertions, and where the regions of K3 at the ends of the interval look like the duals of O8 planes?

Degenerate Limit of K3

Hein, Sun, Viaclovsky and Zhang [HSVZ]

- Family of K3 Metrics $g(t)$, limit $t=0$ is line interval
- Long Neck Region at small t
- Segment of neck is nilfold fibred over a line.
- Nilfold is S^{1} bundle over T^{2}, with degree (Chern number) m. Different values of m in different segments.
- Jump in m: insertion of gravitational instanton (Kaluza Klein monopole)
- Ends of neck capped by Tian-Yau spaces: complete non-compact hyperkahler manifolds asymptotic to nilfold fibred over a line

Figure 1. The vertical arrows represent collapsing to a one-dimensional interval. The red circles represent the S^{1} fibers and the blue curves represent the base $\mathbb{T}^{2} \mathrm{~s}$ of the nilmanifolds. The \times s are the monopole points in the neck region \mathcal{N}. The gray regions are in the "damage zones".

1st approximation to HSVZ K3

Interval $\tau \in[0, \pi]$
Multi-domain wall solution with domain walls at $\tau=\tau_{1}, \tau_{2}, \ldots \tau_{n}$
Single-sided domain walls at $\tau=0, \pi$

$$
\begin{aligned}
& d s^{2}=V(\tau)\left(d \tau^{2}+d x^{2}+d z^{2}\right)+\frac{1}{V(\tau)}(d y+M(\tau) x d z)^{2} \\
& V(\tau)= \begin{cases}c_{1}+m_{1} \tau, & 0 \leq \tau \leq \tau_{1} \\
c_{2}+m_{2} \tau, & \tau_{1}<\tau \leq \tau_{2} \\
\vdots & \\
c_{n}+m_{n} \tau, & \tau_{n-1}<\tau \leq \tau_{n} \\
c_{n+1}+m_{n+1} \tau, & \tau_{n}<\tau \leq \pi\end{cases}
\end{aligned}
$$

HSVZ resolve singularities:

- Resolve domain walls with Ooguri-Vafa construction
- Resolve single-sided domain walls with Tian-Yau spaces

Ooguri-Vafa Metric

Want Gibbons-Hawking metric, \mathbb{R}^{3} replaced with $\mathbb{R} \times T^{2}$ 1st approximation: smear over T^{2}

Ooguri-Vafa:

- On \mathbb{R}^{3}, take periodic array of sources in (x, z) plane
- Regularised sum of potentials gives harmonic function
- Can now periodically identify x, z directions, to get single source on $\mathbb{R} \times T^{2}$.
- Near source, non-singular, looks like Taub-NUT
- Can then take superpositions to get multiple sources on $\mathbb{R} \times T^{2}$.
- Solutions regular on finite interval in \mathbb{R}

Resolve GH metric with

$$
V(\tau)=\left\{\begin{array}{ll}
c+m^{\prime} \tau, & \tau \leq 0 \\
c+m \tau, & \tau>0 .
\end{array} \quad \text { Charge } \mathrm{N}=\mathrm{m}-\mathrm{m}^{\prime}\right.
$$

by OV metric with V harmonic on $\mathbb{R} \times T^{2}$
Monopole charge N
Near sources, N -centre multi Taub-NUT, or one source of charge N , orbifold singularity: bubbling limit to Taub-NUT

For N sources, regular hyperkahler metric for some interval

$$
-T<\tau<T^{\prime}
$$

Far enough away from $\tau=0$, tends to GH with

$$
V(\tau)= \begin{cases}c+m^{\prime} \tau, & \tau \leq 0 \\ c+m \tau, & \tau>0\end{cases}
$$

Tian-Yau Spaces

- Complete non-singular non-compact hyperkahler space
- Asymptotic to a nilfold bundle over a line.
- Of the form $M \backslash D$, where M is a del Pezzo surface, $D \subset M$ is a smooth anticanonical divisor
- Del Pezzo surfaces are complex algebraic surfaces classified by their degree b, where $\mathrm{b}=1,2, \ldots, 9$. Kahler 4-manifolds, $c_{1}>0$.
- The del Pezzo surface of degree nine is CP2
- A degree b del Pezzo surface can be constructed from blowing up $9-b$ points in CP2
- A 2nd del Pezzo surface of degree 8 is $\mathrm{CP}^{1} \times \mathrm{CP}^{1}$
- The TY space M_{b} of degree b is constructed from del Pezzo of degree b
- M_{b} is asymptotic to GH metric on $N_{b} \times \mathbb{R}$ where N_{b} is nilfold of degree b
- Degree zero: Take M to be rational elliptic surface, $N_{0}=T^{3}, M_{0}$ is ALH, asymptotic to cylinder given by $T^{3} \times \mathbb{R}$

1st approximation to HSVZ K3

Interval $\tau \in[0, \pi]$
Multi-domain wall solution with domain walls at $\tau=\tau_{1}, \tau_{2}, \ldots \tau_{n}$
Single-sided domain walls at $\tau=0, \pi$

$$
\begin{aligned}
& d s^{2}=V(\tau)\left(d \tau^{2}+d x^{2}+d z^{2}\right)+\frac{1}{V(\tau)}(d y+M(\tau) x d z)^{2} \\
& V(\tau)=\left\{\begin{array}{ll}
c_{1}+m_{1} \tau, & 0 \leq \tau \leq \tau_{1} \\
c_{2}+m_{2} \tau, & \tau_{1}<\tau \leq \tau_{2} \\
\vdots & \\
c_{n}+m_{n} \tau, & \tau_{n-1}<\tau \leq \tau_{n} \\
c_{n+1}+m_{n+1} \tau, & \tau_{n}<\tau \leq \pi
\end{array} \quad M(\tau) \equiv V^{\prime}(\tau)\right.
\end{aligned}
$$

HSVZ resolve singularities:
Glue together Ooguri-Vafa spaces, Tian-Yau spaces to get complete K3 metric

Tian-Yau spaces of degree b_{-}, b_{+}

$$
\begin{aligned}
& b_{-}=-m_{1}, b_{+}=m_{n+1} \quad 0 \leq b_{ \pm} \leq 9 \\
& N_{i}=m_{i+1}-m_{i} \\
& \sum_{i=1}^{n} N_{i}=b_{-}+b_{+} \leq 18
\end{aligned}
$$

1st approximation to HSVZ K3

Interval $\tau \in[0, \pi]$
Multi-domain wall solution with domain walls at $\tau=\tau_{1}, \tau_{2}, \ldots \tau_{n}$
Single-sided domain walls at $\tau=0, \pi$

$$
\begin{aligned}
& d s^{2}=V(\tau)\left(d \tau^{2}+d x^{2}+d z^{2}\right)+\frac{1}{V(\tau)}(d y+M(\tau) x d z)^{2} \\
& V(\tau)=\left\{\begin{array}{ll}
c_{1}+m_{1} \tau, & 0 \leq \tau \leq \tau_{1} \\
c_{2}+m_{2} \tau, & \tau_{1}<\tau \leq \tau_{2} \\
\vdots & \\
c_{n}+m_{n} \tau, & \tau_{n-1}<\tau \leq \tau_{n} \\
c_{n+1}+m_{n+1} \tau, & \tau_{n}<\tau \leq \pi
\end{array} \quad M(\tau) \equiv V^{\prime}(\tau)\right.
\end{aligned}
$$

HSVZ resolve singularities:
Glue together Ooguri-Vafa spaces, Tian-Yau spaces to get complete K3 metric

Tian-Yau spaces of degree b_{-}, b_{+}

$$
\begin{array}{ll}
b_{-}=-m_{1}, b_{+}=m_{n+1} & 0 \leq b_{ \pm} \leq 9 \\
N_{i}=m_{i+1}-m_{i} & \text { Almost agrees with type I' picture } \\
\sum_{i=1}^{n} N_{i}=b_{-}+b_{+} \leq 18 & \text { But } 18 \text { instead of } 16 ?
\end{array}
$$

Type l': 16 D8 branes \& 2 O8-planes

This is correct for perturbative type I' theory
At strong coupling, O8 plane can emit one D8 brane to leave
O8* plane of charge -9
Then O8* planes at either end and 18 D8-branes on interval If at $\tau=0$ there are N_{-}branes giving charge $b_{-}=-9+N_{-}$ and at $\tau=\pi$ there are N_{+}branes giving charge $b_{+}=-9+N_{+}$

$$
\begin{aligned}
& b_{-}=-m_{1}, b_{+}=m_{n+1} \\
& \sum_{i=1}^{n} N_{i}=b_{-}+b_{+} \leq 18
\end{aligned}
$$

Same equations as for degenerate K3
Both cases have 18 sources
Allows e.g. SU(18) gauge symmetry from coincident sources

Matching Moduli Spaces

Type I' moduli space $O(1,17 ; \mathbb{Z}) \backslash O(1,17) / O(17) \times \mathbb{R}^{+}$

16 D8-brane positions, dilaton, length of S^{1}

$$
\mathrm{I}^{\prime} \equiv \frac{\mathrm{IIA}}{\Omega \mathrm{R}_{9}} \xrightarrow{\mathrm{~T}} \frac{\mathrm{IIB}}{\Omega \mathrm{R}_{6789}} \xrightarrow{\mathrm{~s}} \frac{\mathrm{IIB}}{(-1)^{\mathrm{F}_{\mathrm{L}} \mathrm{R}_{6789}}} \xrightarrow{\mathrm{~T}} \frac{\| \mathrm{II}}{\mathrm{R}_{6789}}
$$

Embed in moduli space of duals: region where dual has long throat

Orientifold of IIB on T^{4} / \mathbb{Z}_{2}
Regard T^{4} / \mathbb{Z}_{2} as $T^{3} \times I$, where at ends of I identify T^{3} to T^{3} / \mathbb{Z}_{2}
Long neck $T^{3} \times I$, but ends "pinch off". Moduli from positions of branes K3: long neck Nilfold $\times I$. Moduli from positions of KK's

- Duality between Heterotic or type I on T^{4} and IIA on K3 understood as $\mathrm{T}+\mathrm{S}$ dualities at orbifold point when $K 3 \sim T^{4} / \mathbb{Z}_{2}$
- But not at general points in K3 moduli space - no isometries
- However, moduli space of type I on T^{4} and IIA on K3 are the same
- Duality at one point in moduli space leads to duality at all points
- Can translate moving in type I mod space into moving in IIA mod space

Non-Geometric

- K3: no isometries, so no conventional T-duals (if not orbifold)
- Move to region of mod space with long neck, HSVZ metric
- In long neck region, approximately nilfold x interval (I)
- T-dual: T-fold x I, essentiality doubled space x I
- Sources: exotic branes, moving in non-geometric background

Special Holonomy Generalisations

- Replace 3-d nilfold with higher dim nilmanifold
- Quotient of nilpotent Lie group by discrete subgroup
- T^{n} bundle over T^{m}
- Special holonomy metrics on nilmanifold fibred over a line Gibbons, Lu, Pope and Stelle [GLPS]
- T-Dualise: intersecting NS5-branes Chaemjumrus and CH

Conclusions

- Nilfold and its duals: local string solutions by fibring over I
- Dualise Type l': full string theory solutions
- Realise K3 as nilfold fibred over interval with KK monopole insertions and Tian-Yau end caps
- Good approximate geometry for K3 that allows explicit duality transformations
- TY: geometric dual of orientifolds, reveals nonperturbative structure of orientifolds: O8* etc.

Del Pezzo Magic?

Del Pezzo surfaces have intriguing relations to U-duality, branes etc
Much of structure of toroidal compactifications of M-theory mirrored in mathematics of Del Pezzo surfaces

A Mysterious duality
A. Iqbal, A. Neitzke, C. Vafa

Noncritical strings, Del Pezzo singularities and Seiberg-Witten curves
W. Lerche, P. Mayr, N. Warner

Exotic Branes from del Pezzo Surfaces
J. Kaidi

Borcherds symmetries in M theory
P. Henry-Labordere, B. Julia, L. Paulot

Tian-Yau spaces and their relation to K3 give another link to Del Pezzo surfaces

