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A Possible Subtitle

The purpose of the lecture is to exhibit ways in which the
Theory of Supergravity stimulated Mathematics: notably
through the exploration of specific geometric objects of
importance in Riemannian Geometry.
In this lecture I will try and connect with the seminal work of
Eugène CREMMER, Bernard JULIA and Joël SCHERK, but
also with some other works in Theoretical Physics
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Cremmer-Julia-Scherk 11-Dimensional Supergravity
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1. Supergravity
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General Relativity and Quantum Physics

Developing a theory that would encompass General Relativity and
Quantum Mechanics has been considered a key challenge of
Physics almost from the onset of the two theories:

Paul-Adrien-Maurice DIRAC introduced the concept of spinor
in Physics precisely to give a relativistically invariant version
of the Schrödinger equation;
A first attempt to enlarge space-time to give a natural setting
to couple gravitation and other interactions was made by
Theodor KALUZA;
It was brought to another level by the development of
non-Abelian gauge theories that could deal with interactions
other than gravity;
The purpose of developing a theory of Supergravity was
precisely to bridge this gap.
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Supergravity as Physical Theory

The celebration of 40 years of Supergravity a few years ago of
course gave rise to a number of articles looking back at its history:

The theory has generated tens of thousands of articles;

Its fate has of course been linked to the fate of supersymmetry
in its several disguises: String Theory, M-Theory, ...;

The informations on the Higgs Boson given to this point by
LHC experiments seem to indicate that the most obvious way
supersymmetric theories could complement the Standard
Model does not work and more thought has to be given to the
issue;

The Breakthrough Prize given to Peter NIEUWENHUIZEN,
Sergio FERRARA and Daniel FREEDMAN for their seminal
paper on Supergravity Theory last year led to further
contestations but I will come back to this in my conclusion.
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The Mathematical Content of Supergravity

For me as a Geometer, and I am conscious this choice is biased,
Supergravity Theory is a theory:

that, in the context of Supersymmetry, forces to consider
spinor fields as central objects;
for which an important ingredient is a differential 3-form, an
object that has not been historically so systematically explored
by mathematicians;
in which dimension 11 (always to be remembered as 4 + 7)
plays a specific role;
in which Killing spinors play a central role;
hence that connects naturally to metrics with special
holonomy.
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2. The View of a Mathematician on Spinors
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Spinors as Algebraic Objects

As you all know, Élie CARTAN is the one who spotted in 1913 that
usual algebraic objects (vectors, tensors) were not enough in the
context of classification of representations of the orthogonal group.
The approach I follow is based on the use of Clifford algebras on
vector spaces endowed with a scalar product:

Even-dimensional Clifford Algebras are endomorphism algebras
of the vector space of spinors: Cl(V , g) = End(ΣV ); and
odd-dimensional Clifford algebras direct sums of two
endomorphism algebras of vector spaces of spinors;
The Spin group Spinn, a 2-fold cover of SOn, can be viewed
as a subgroup of the multiplicative group of Clifford algebras,
and therefore acts (irreducibly) on the space of spinors;
Spinors for different metrics can be compared through an
explicit construction found as late as 1992;
When vectors and differential k-forms have a specific
“dimension”, to specify the “dimension” of a spinor is trickier.
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Spinors as Fields

One needs to consider spinors in the context of manifolds,
something that has not been so evident, as the last statement in
the book by Élie CARTAN ”La théorie des spineurs” warned that
the usual construction using local coordinates was problematic.
This difficulty can be overcome using Bundle Theory. The
following is now well known:

An oriented manifold M can be endowed with a
Spinn-principal bundle covering SOgM for a Riemannian
metric g if and only if w2(M) = 0;

Via the associated bundle construction, once a Spinn-principal
bundle γ is chosen, one forms the spinor bundle ΣγM −→ M;

The spinor bundle ΣγM −→ M is naturally endowed with a
covariant derivative Dγ ;

Spinor fields are of course sections of the spinor bundle.
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Natural Operators on Spinor Fields

On the space of spinor fields only two first order differential
operators are universally defined, and combinations thereof:

This is because T ∗M ⊗ ΣγM decomposes into two invariant

subspaces, a copy of ΣγM and another space Σ
3/2
γ M;

The projection onto the first factor gives rise to the Dirac
operator D that maps spinor fields to spinor fields, and is
defined, for a spinor field ψ, by

Dγψ =
n∑

i=1

ei .D
γ
ei
ψ ,

where (ei ) denotes an orthonormal basis of the tangent space;

The projection onto the second factor gives rise to the twistor
operator P, which maps Γ(ΣγM) to Γ(T ∗M ⊗ ΣγM), and is
defined for X ∈ TM and ψ is a spinor field by

(Pγψ)(X ) = Dγ
Xψ +

1

n
X .Dγψ .
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Dirac Operators

Here are some important properties of the Dirac operator, well
known to you of course:

It is a square root of the Laplace-Beltrami operator, hence an
elliptic operator in a Riemannian setting;
Its principal symbol is given by Clifford multiplication;
It is self-adjoint;
In even dimensions, it exchanges the chirality of spinors, hence
non-trivial eigenspinors for the Dirac operator have necessarily
components of both chiralities, unless they are in its kernel.
For a spinor field ψ, the Schrödinger-Lichnerowicz formula
reads

(Dγ)2ψ = (Dγ)∗Dγψ +
1

4
Scalg ψ ,

where (Dγ)∗ denotes the adjoint of the covariant derivative
Dγ and Scalg the scalar curvature of g .
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3. Killing Spinors
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Killing Spinors

The notion of a Killing spinor defined below was introduced by
Roger PENROSE and Martin WALKER while they were looking for
first integrals of the geodesic flow of the Kerr metric.

Definition (R. PENROSE)

A Killing spinor ψ is a spinor field lying in the kernel of P and an
eigenspinor for D. Its characteristic equation is, for some λ ∈ C,

∀X ∈ TM, DXψ +
1

n
λX .ψ = 0 .

Killing spinors are some sort of infinitesimal supersymmetry.
The 1-form ξψ defined on X ∈ TM by ξψ(X ) = (X .ψ, ψ) is
dual to a Killing vector field, i.e. an infinitesimal isometry.
Other components of ψ⊗ ψ̄ also satisfy interesting conditions.
The curvature tensor of Dγ acting on ψ is very special,
namely, for all X , Y ∈ TM, RX ,Yψ = λ2/n2 (X .Y −Y .X ).ψ .
It follows that Ricg = 4λ2 (n − 1)/n2 g .
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Killing Spinors (continued)

It is useful to discuss cases according to the eigenvalue λ:

If λ = 0, then the Killing spinor is parallel, and hence the
metric has reduced holonomy (see later);
If λ ∈ i R∗, then M is non compact;
If λ ∈ R∗, then the Ricci curvature is uniformly positive, and
by Myers’ Theorem, M is compact if the metric g is complete.

The key construction, due to Christian BÄR, goes as follows:

Construct the cone CM = M × R+∗ over M and endow it
with the cone metric ḡ = dr2 + r2 g ;
Then, through an identification of an action of the group
Spinn+1 within the Clifford algebra Clg (M), map spinor fields
on M into spinor fields on CM;
Through this identification, Killing spinors on M are mapped
to parallel fields on CM.
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A View via Modified Connections on Spinor Fields

Actually it is not surprising that Killing spinors can be related to
parallel fields (on some auxiliary space).
The link comes from modified connections on spinor fields:

Indeed the equation that is satisfied by Killing spinors can be
viewed as that of a spinor field parallel for the modified
connection Dλ

X = DX + 1
n λX ;

Given any 1-form A taking its values in the endomorphisms of
the spinors, such a construction can be generalised to
modified connection DA defined on a spinor field ψ and
X ∈ TM as DA

X (ψ) = DXψ + A(X )(ψ);
Of special interest in relation with Supergravity is to take A to
be the fundamental 3-form viewed as a 1-form with values in
exterior 2-forms as 2-forms act naturally on spinors.
If a non-vanishing A-modified Killing spinor exists, the metric
g must satisfy the modified Einstein equation with right hand
side given by the coupling to A.
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4. Holonomy groups
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The Concept of Holonomy

The concept of a holonomy group was introduced in Geometry by
Élie CARTAN in 1925 and developed in the article ”Les groupes
d’holonomie des espaces généralisés” in 1926. The notion makes
sense for any bundle endowed with a connection over a space.
Here are some key facts:

Holonomy transformations are generated by parallel transport
along closed curves with respect to the given connection;
Armand BOREL and André LICHNEROWICZ established in
1952 that the group generated by such transformations is a
Lie subgroup of the structure group of the bundle;
Warren AMBROSE and Isadore M. SINGER showed in 1953
that the holonomy group relates to the curvature of the
connection as its Lie algebra is generated by curvature
transformations;
Actually the holonomy group has a topological meaning as it
is the smallest group to which the bundle can be reduced.
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Holonomy groups in Riemannian Geometry

In the context of Riemannian Geometry, further results concerning
the holonomy have been obtained for the Levi-Civita connection.
Here are the key results:

As the metric g is parallel under the Levi-Civita connection,
the holonomy group is a subgroup of On if the manifold M is
of dimension n, and of SOn if M is oriented;
Marcel BERGER gave the list of possible holonomy groups in
the case of irreducible non symmetric spaces.
Here is the list (in the oriented case): SOn (the generic case),
Um, SUm, Spq, Sp1×Spq, G2, Spin7 and Spin9 (shown by
Alfred GRAY as not possible);
It is interesting to note that André WEYL in a lecture at the
Séminaire Bourbaki in 1962 does signal the importance of the
results of Marcel BERGER.
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Special Holonomy

Metrics with special holonomy in Berger’s list have been the focus
of a lot of attention by Riemannian geometers as constructing
examples of some of them required great ingenuity.

Here is the situation now:

Metrics with holonomy Um are Kählerian, the Kähler form
being the extra parallel object;
Metrics with holonomy SUm are Kählerian with a parallel
complex volume form, hence the vanishing of the first Chern
class and flat Ricci curvature; the first non-trivial examples
came from the solution of the Calabi conjecture by YAU Shing
Tung in 1976;
The first compact examples of metrics with holonomy G2 (in
dimension 7) and Spin7 (in dimension 8) were constructed by
Dominic JOYCE and represents a real ”tour de force” but
many other examples were later found.
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Special Holonomy G2

Metrics with holonomy G2 are particularly interesting as they mix
in a very interesting way algebraic and differential properties which
are also relevant to some questions in Theoretical Physics.

Here are some highlights:

Metrics with holonomy G2 are Ricci-flat and the manifold
bearing them must have finite fundamental group;
What plays an important role in discussing such situations is
the 3-form whose stabiliser is G2; it actually defines a metric
at each point since G2 is a subgroup of the orthogonal group,
and this metric has special properties that follow from the fact
that this fundamental form and its Hodge dual are closed;
Similar considerations can be presented in dimension 8 with a
4-form to give rise to Spin7 holonomy groups;
There are many contributions to the discussion of special
holonomy groups by of Robert BRYANT.
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A Flashback on Manifolds with Killing Spinors

Many examples of manifolds admitting Killing spinors are
connected to holonomy considerations:

Nigel HITCHIN has shown that manifolds with parallel spinors
have necessarily reduced holonomy SUm, Spin7 and G2;
Manifolds with imaginary Killing spinors (actually the case
forced if the manifold is complete and non compact) have
been classified by Helga BAUM: hyperbolic spaces or special
warped products of R with a manifold with a parallel spinor;
The classification for real Killing spinors is a bit more involved;
For 2 ≤ n the standard sphere has only one spin structure.
For the standard metric, the bundle of spinors is trivialized by
Killing spinors that are induced by parallel spinors in Rn+1 as
suggested by the construction of Christian BÄR;
In even dimensions other than 6, only standard spheres carry
Killing spinors. In dimension 6, one also finds the manifolds
endowed with a nearly Kähler non Kähler metric.
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A Flashback Manifolds with Killing Spinors (cont.)

Other examples are interesting from a geometric or even a physical
point of view:

In dimension 5, Thomas FRIEDRICH and Ines KATH proved
that one finds only manifolds with an Einstein-Sasaki metric;
this was generalized by BÄR in all dimensions 4q + 1;
In dimensions 4q + 3 (for 2 ≤ q), BÄR showed that one has
to add the Sasaki 3-manifolds, a case studied further by
Andrei MOROIANU;
In the remaining dimension 7, the extra family to add
corresponds to manifolds for which the cone built over them
carries a metric with Spin7 holonomy;
The so-called squashed 7-sphere is a very interesting metric
on S7: it is a non-standard Einstein metric with a very
geometric description but also a connection to supergravity.
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5. Perspectives from a Spinorial Point of View
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Developing a Spinorial Geometry

As you have by now found out, the consideration of spinor fields
and natural operators defined on them proved to be a powerful
tool to deal with some specific important questions in Riemannian
Geometry.
More is expected:

A link to the Ricci curvature, and in particular to the Einstein
condition, as it appeared in presence of a Killing spinor;
A special role in metrics with special holonomy;
So far, mathematicians focused attention on 1

2 -spinor fields;
Attention should certainly also be devoted to spinors with
higher spins, 3

2 to start with, e.g. through a more systematic
study of the Rarita-Schwinger operator. Mathematicians have
not done that so far;
Actually this gives me the opportunity to point to another
article by Bernard JULIA relating the Rarita-Schwinger
operator and moduli of Einstein metrics.
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Another Article by Bernard JULIA

C. R. Acad. Sc. Paris, t. 295 (20 septembre 1982) Série II —113 

PHYSIQUE THÉORIQUE. — Système linéaire associé aux équations d'Einstein. 

Note (*) de Bernard Julia, présentée par Claude Bouchiat. 

Nous exhibons un système différentiel extérieur linéaire qui est « intégrable » au sens 

de E. Cartan si et seulement si les équations d'Einstein (dans le vide) sont satisfaites. 

Nous développons l'analogie avec le programme des twisteurs et avec les systèmes 

hamiltoniens qui admettent une paire de Lax que l'on appelle « complètement 

intégrables ». La supersymétrie apparaît à nouveau dans l'étude de systèmes réalistes. 

Les progrès récents de la théorie des équations aux dérivées partielles résultent en 

grande partie de la découverte de systèmes linéaires « associés » qui admettent pour 

condition de « compatibilité » les systèmes non linéaires que l'on souhaite étudier. Il 

nous faut donc préciser la notion de compatibilité. Nous mentionnerons deux 

exemples bien connus : l'équation des twisteurs et la paire de Lax de l'équation de 

Sine-Gordon qui correspondent respectivement à la self-dualité du tenseur de 

courbure de Weyl W = 0 [1] et à l'équation □ a =sin a [2].  

Nous présentons un troisième système linéaire qui est intégrable au sens d'Elie 

Cartan [3] si et seulement si les équations d'Einstein pour la gravitation sans sources 

extérieures sont satisfaites, il s'agit tout simplement de la forme linéarisée des 

équations de propagation du champ de spin 3/2 de la supergravité dans un espace 

(pseudo) riemannien donné [4]. 
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The Interface between Mathematics and Physics

As you know, the 2019 Breakthrough Prize led to a controversy:

Some of it was related to the fact that, if Supergravity is to
be honoured, all the main initiators should be honoured with
the prize. For sure there are others than the ones
distinguished, e.g. Stanley DESER and Bruno ZUMINO, but
of course several others...
Critical views were also expressed on chosing Supergravity as
topic, ”a failed idea” to some, leading to (abusive) statements
such as ”The message is clearly that in fundamental physics
contact to observation is no longer necessary.”
Did not it take more than half a century to have some solid
evidence that black holes exist?
This gives me the opportunity to call your attention to a
quote from the Committee of the Königlich Preussische
Akademie der Wissenschaften that offered a position in Berlin
to Albert EINSTEIN in 1913.
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Preussische Akademie der Wissenschaften Quote

The statement was signed by Max PLANCK, Walther NERNST,
Heinrich RUBENS and Otto WARBURG.
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I thank you for your attention.

Jean-Pierre BOURGUIGNON
Institut des Hautes Études Scientifiques

35, route de Chartres
F-91440 BURES-SUR-YVETTE, France

JPB@ihes.fr
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