## N=8 Supergravity and the Real World

#### En l'honneur de Bernard Julia

#### Institut Henri Poincaré, 17 December 2019

Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)









## **Towering Achievements**



- Maximal supergravity [Cremmer, Julia, Scherk(1978); Cremmer, Julia(1979)]
- Hidden exceptional duality symmetries [Cremmer, Julia(1979)]
- Emergence of  $E_{10}$  in reduction to D = 1? [Julia(1982)]
- ... as well as many others

## N = 8 Supergravity

Unique theory (modulo gauging), *most symmetric* known field theoretic extension of Einstein's theory

$$\mathbf{1} \times [2] \oplus \mathbf{8} \times \left[\frac{3}{2}\right] \oplus \mathbf{28} \times [1] \oplus \mathbf{56} \times \left[\frac{1}{2}\right] \oplus \mathbf{70} \times [0]$$

 $\rightarrow descends \ from \ D{=}11 \ SUGRA \ [Cremmer,Julia,Scherk(1978)]$ 

In the late 1970s this theory was thought to be a promising candidate for a unified theory of quantum gravity and matter interactions. However,

- Question of UV finiteness (or not)?
- Phenomenology (chiral fermions, SUSY breaking, huge negative cosmological constant,...)?

Nevertheless: large part of work since 1980s on string unification is really based on, or inspired by maximal supergravity and its hidden symmetries  $E_7$ ,  $E_8$ ,...!

#### Finiteness: to be or not to be?

We now know that N = 8 supergravity is more finite than expected: behaves like N = 4 super-Yang-Mills up to four loops [Bern,Carrasco,Dixon,Johansson, Roiban, PRL103(2009)081301]

• However: recent computation at five loops shows divergence at  $D = \frac{24}{5} = 2 + \frac{14}{L} < \frac{26}{5} = 4 + \frac{6}{L}$  (for L = 5) [Bern,Carrasco,Chen,Edison,Johansson,Parra-Martinez,Roiban,PRD98(2018)086021]

Thus: question of finiteness is still up in the air  $\rightarrow$ Although no fully supersymmetric and fully  $E_{7(7)}$  invariant counterterm known, finiteness would probably still require novel (so far hidden) symmetries...

But even if N=8 Supergravity is finite to all orders:

- what about *non-perturbative* quantum gravity?
- is there any relation to *real physics*?

## Phenomenology: early (failed) attempts

- 1. Focus on vector-like  $SU(3) \times U(1) \subset SO(8)$ , with identifications  $SU(3) \equiv SU(3)_c$  and  $U(1) \equiv U(1)_{em}$  [Gell-Mann(1978)]  $\rightarrow$  does not work: color sextets and octets
- 2. Following a suggestion by Cremmer and Julia: elevate (chiral) R symmetry SU(8) to a *dynamical* symmetry  $\rightarrow 3 \times (\bar{5} \oplus 10)$ fermions of SU(5) GUT + much more [Ellis,Gaillard,Zumino(1981)]
- 3. Or: unitary irreps of  $E_{7(7)}$ ? [Ellis,Gaillard,Günaydin,Zumino(1982)]

Main problem with 2. and 3.: too much junk! (much like for low energy SUSY/MSSM model building...)

Prevailing view (since about 1982): N=8 supergravity is *obviously not* a good candidate for quantum gravity and the unification of all interactions!

However:  $56 - 8 = 48 = 3 \times 16!$ 

#### A strange coincidence?

 $SO(8) \rightarrow SU(3) \times U(1)$  breaking and 'family-color locking'

| $(u,c,t)_L$ :                    | ${f 3}_c	imesar{f 3}_f	o {f 8}\oplus {f 1}\;,$         | $+\frac{1}{2} = \frac{2}{3} - q$  |
|----------------------------------|--------------------------------------------------------|-----------------------------------|
| $(\bar{u},\bar{c},\bar{t})_L$ :  | $ar{3}_c 	imes 3_f 	o 8 \oplus 1 \; ,$                 | $-\frac{1}{2} = -\frac{2}{3} + q$ |
| $(d,s,b)_L$ :                    | $3_c 	imes 3_f 	o 6 \oplus ar{3} \; ,$                 | $-\frac{1}{6} = -\frac{1}{3} + q$ |
| $(\bar{d},\bar{s},\bar{b})_L$ :  | $ar{3}_c 	imes ar{3}_f  ightarrow ar{6} \oplus 3 \; ,$ | $+\frac{1}{6} = \frac{1}{3} - q$  |
| $(e^-,\mu^-,	au^-)_L$ :          | $1_c 	imes 3_f  ightarrow 3 \; ,$                      | $-\frac{5}{6} = -1 + q$           |
| $(e^+,\mu^+,\tau^+)_L$ :         | $1_c 	imes ar{3}_f  ightarrow ar{3}$ ,                 | $+\frac{5}{6} = 1 - q$            |
| $( u_e, u_\mu, u_	au)_L$ :       | $1_c 	imes ar{3}_f  ightarrow ar{3}$ ,                 | $-\frac{1}{6} = 0 - q$            |
| $(ar u_e,ar u_\mu,ar u_	au)_L$ : | $1_c 	imes 3_f  ightarrow 3 \; ,$                      | $+\frac{1}{6} = 0 + q$            |

Supergravity and Standard Model assignments agree if spurion charge is chosen as  $q = \frac{1}{6}$  [Gell-Mann (1983)]

Realized at  $SU(3) \times U(1)$  stationary point! [Warner, HN, NPB259(1985)412]

## (No) News from LHC



Exclusion limits, nothing but exclusion limits, ...

- No hints whatsoever of new physics
- RG Evolution of (slightly amended) SM couplings: no Landau poles, no instabilities of effective potential up to Planck scale

Conclusion (so far, at least): SM could survive more or less *as is* all the way to Planck scale  $M_{PL}$ !

## Fixing the U(1) mismatch

[Meissner,HN: Phys.Rev.D91(2015)065029]

Spurion charge shift can be realised as  $exp(\frac{1}{6}\omega \mathcal{I})$ 

$$\mathcal{I} = \frac{1}{2} \left( T \wedge \mathbf{1} \wedge \mathbf{1} + \mathbf{1} \wedge T \wedge \mathbf{1} + \mathbf{1} \wedge \mathbf{1} \wedge T + \mathbf{T} \wedge \mathbf{T} \wedge \mathbf{T} \right) \quad \Rightarrow \quad \mathcal{I}^2 = -\mathbf{1}$$

acting on 56 fermions  $\chi^{ijk}$  in 8  $\wedge$  8  $\wedge$  8 of SU(8), with

However:  $\mathcal{I}$  is *not* in SU(8)  $\equiv K(E_7) \Rightarrow$ mismatch can *not* be fixed *within* N = 8 supergravity. Claim: to accommodate deformed U(1) we have to go all the way to  $K(E_{10})$  (and thus  $E_{10}$ )!



## **Fermions and** $K(E_{10})$

... probably a key issue for further progress...

Important point: maximally supersymmetric theories *not* based on (hypothetical) superextensions of  $E_n$ :

- There is no proper superextension of  $E_n$  for any n.
- For  $D \ge 3$  supergravity fermions transform in maximal compact subgroup  $K(E_n) \subset E_{n(n)}$ , e.g.
  - $K(E_7) \equiv SU(8)$ fermions  $\in$  8 and 56 $K(E_8) \equiv Spin(16)/Z_2$ fermions  $\in$  16 $_v$  and 128 $_c$
- The associated (double-valued) fermion representations are not 'liftable' to  $E_n$  representations
- Expect all of this to remain true for  $K(E_{10}) \subset E_{10}$ .

## What is $K(E_{10})$ ?

For  $E_{10}$ , the 'maximal compact' subalgebra is defined as the fixed point algebra of the Chevalley involution

$$\omega(e_j) = -f_j , \quad \omega(f_j) = -e_j , \quad \omega(h_j) = -h_j$$

together with invariance property  $[\omega(x),\omega(y)]=\omega([x,y])$ 

$$\Rightarrow E_{10} = K(E_{10}) \oplus K(E_{10})^{\perp}, \quad x = \omega(x) \text{ for } x \in K(E_{10})$$

This definition is analogous to the corresponding one for the finite-dimensional case, e.g.  $x = \omega(x) \in \mathfrak{so}(n) \subset \mathfrak{sl}(n)$  for  $\omega(x) = -x^T$ , with corresponding decomposition  $\mathfrak{sl}(n) = \mathfrak{so}(n) \oplus \mathfrak{so}(n)^{\perp}$ 

Consequently,  $K(E_{10})$  is generated by

$$x_i := e_i - f_i = \omega(x_i)$$
  $i, j, \dots = 1, \dots, 10$ 

with Berman-Serre relations (for  $E_{10}$  Dynkin diagram)  $\begin{bmatrix} x_i, x_j \end{bmatrix} = 0$  if *i* and *j* are non-adjacent  $\begin{bmatrix} x_i, [x_i, x_j] \end{bmatrix} + x_j = 0$  if *i* and *j* are adjacent

Theorem: each set of  $\{x_i\}$  satisfying the above relations provides a realization of  $K(E_{10})$ . [S.Berman(1989)]

Involutory subalgebra  $K(E_{10}) \subset E_{10}$  is spanned by  $\{J_{\alpha}^r\}$ 

 $J_{\alpha}^{r} \equiv E_{\alpha}^{r} - E_{-\alpha}^{r}, \quad \alpha \in \Delta_{+}(\mathcal{E}_{10}), \quad r = 1, ..., \text{mult}(\alpha)$ 

**But:**  $K(E_{10})$  is  $\infty$ -dimensional and a very strange beast!

- $K(E_{10})$  is *not* a Kac-Moody algebra [Kleinschmidt, HN: CQG22(2005)4457]
- $K(E_{10})$  has finite-dimensional (unfaithful) representations
- $\Rightarrow$  K(E<sub>10</sub>) is *not* simple ( $\equiv$  has non-trivial ideals)
- No faithful (infinite-dimensional) representations are known

#### Unfaithful representations

 $\iff$  existence of non-trivial ideals  $i_V$  in  $K(E_{10})!$ 

More precisely: for unfaithful representation V the associated ideal is

 $\mathbf{i}_V := \left\{ x \in \mathbf{K}(\mathbf{E}_{10}) \mid x \cdot v = 0 \; \forall v \in V \right\} \subset \mathbf{K}(\mathbf{E}_{10})$ 

For known examples,  $i_V$  has *finite* co-dimension in  $K(E_{10})$   $\Rightarrow i_V^{\perp} \equiv K(E_{10}) \ominus i_V$  is *not* a subalgebra of  $K(E_{10})$ . (is spanned by non-convergent sums) [Kleinschmidt,Palmkvist,HN: JHEP(2007)051] Analysis of fermionic sector of D=11 SUGRA  $\Rightarrow$ Spin- $\frac{1}{2}$  ('Dirac representation'  $V_{1/2}$ ): [deBuy1,Henneaux,Paulot(2005)]  $J_{ab}^{(0)}\chi = \frac{1}{2}\Gamma_{ab}\chi, \quad J_{abc}^{(1)}\chi = \frac{1}{2}\Gamma_{abc}\chi$ Spin- $\frac{3}{2}$  ('Rarita-Schwinger representation'  $V_{3/2}$ ) [DKN,dBHP(2006)]

 $J_{ab}^{(0)}\psi_{c} = \frac{1}{2}\Gamma_{ab}\psi_{c} + 2\delta_{c}^{[a}\psi^{b]}, \quad J_{abc}^{(1)}\psi_{d} = \frac{1}{2}\Gamma_{abc}\psi_{d} + 4\delta_{d}^{[a}\Gamma^{b}\psi^{c]} - \Gamma_{d}^{[ab}\psi^{c]}.$ 

Multiple commutators generate full  $K(E_{10})$  algebra:

$$\left[J_{abc}^{(1)}, J_{def}^{(1)}\right] = J_{abcdef}^{(2)} + \delta_{[ab}^{[de} J_{c]}^{(0) f]} \qquad etc$$

Rarita-Schwinger equation can be reformulated as a  $K(E_{10})$  covariant Dirac equation'. [Damour,Kleinschmidt,HN(2006)]

Spin- $\frac{3}{2}$  representation contains IIA and IIB fermions, respectively, upon decomposition under corresponding (finite-dimensional) subgroups of  $K(E_{10})$  [Kleinschmidt,HN(2006)]

More specifically: *Rarita-Schwinger* representation  $\rightarrow$ 8 gravitinos and 56 spin- $\frac{1}{2}$  fermions of maximal N = 8supergravity *at one spatial point* form an unfaithful irreducible spinorial representation of K(E<sub>10</sub>). Fermionic structure of N = 8 supermultiplet can thus be viewed as a consequence of K(E<sub>10</sub>) rather than supersymmetry!

Idem for 8 *massive* gravitinos and 48 spin- $\frac{1}{2}$  fermions

## Why $\mathcal{I}$ belongs to $K(E_{10})$

[Kleinschmidt, HN: Phys.Lett.B747 (2015)]

D=11 fermions in Coulomb gauge split as  $(\hat{a} = 1, 2, 3; \bar{a} = 4, ..., 10)$ 

$$\Psi_A^a = (\Psi_{\alpha i}^{\hat{a}}, \Psi_{\alpha i}^{\bar{a}})$$
 with  $i, j = 1, ..., 8$  and  $\alpha = 1, 2, 3, 4$ 

N=8 supergravity fermions from D=11 gravitino [Cremmer, Julia(1979)]

$$\psi_{\hat{a}\alpha}^i \propto \Psi_{\alpha i}^{\hat{a}} - \frac{1}{2} \sum_{\bar{c}=4}^{10} \Gamma_{ij}^{\bar{c}} (\gamma^5 \gamma_{\hat{a}} \Psi_j^{\bar{c}})_{\alpha} \quad , \quad \chi^{ijk} \propto \sum_{\bar{a}=4}^{10} \Gamma_{[ij}^{\bar{a}} \Psi_{k]\alpha}^{\bar{a}}$$

With redefined variables  $\Phi_A^a = \Gamma_{AB}^a \Psi_B^a$  (no summation!) [Damour, Hillmann]

$$\delta\chi_{ijk} = (T \wedge T \wedge T)_{ijk}{}^{lmn}\chi_{lmn} \quad \leftrightarrow \quad \delta\Phi_{i\alpha}^{a} = T_{ij}\Phi_{j\alpha}^{a} \qquad (*)$$

Latter formula provides a realization of  $\mathcal{I}$  on *all* fermions. For any *real*  $E_{10}$  root  $\alpha$  we have (with  $\alpha^{a} \equiv G^{ab}\alpha_{b}$ ) [Kleinschmidt,HN]

$$\delta(\alpha)\Phi_A^{\mathbf{a}} = \left(-\frac{1}{2}\alpha^{\mathbf{a}}\alpha_{\mathbf{b}} + \frac{1}{4}\delta_{\mathbf{b}}^{\mathbf{a}}\right)\Gamma(\alpha)_{AB}\Phi_B^{\mathbf{b}}$$

Thus need only find linear combination to reproduce (\*), which is possible because there are *infinitely many* real roots in  $E_{10}$ . The proof requires over-extended root of  $E_{10} \Rightarrow$  no way to realise *q*-shift with finite-dimensional R symmetries! More properly, this representation is acted on by

$$Q_{3/2} = K(E_{10}) / \mathcal{N}_{3/2} = SO(32, 288)$$

where  $\mathcal{N}_{3/2}$  is the 'normal subgroup' generated by the RS ideal in  $K(E_{10})$  – but  $\mathcal{Q}_{3/2}$  is *not* a subgroup of  $K(E_{10})$ .

In recent work we have been able to embed full SM group  $SU(3)_c \times SU(2)_w \times U(1)_Y$  into  $Q_{3/2}$  together with a family symmetry  $SU(3)_f$  which does *not* commute with electroweak symmetries. [Meissner,HN, PRL121(2018)091601]

Big open questions: how does  $K(E_{10})$  'unfold' to give rise to spatial dependence and space-time symmetries? And why and how is  $K(E_{10})$  broken to SM symmetries?

## Higher spin realizations of $K(E_{10})$

 $\rightarrow$  trying to break out of the confines of supergravity! But first need to re-write spin- $\frac{3}{2}$  by means of crucial redefinition [Damour,Hillmann:0906.3116]

$$\phi_A^{a} \equiv \sum_{B=1}^{32} \Gamma_{AB}^{a} \psi_B^{a}$$
 (no sum on a!)

Re-definition breaks manifest Lorentz symmetry, but:

$$\{\psi_A^a, \psi_B^b\}_{\text{Dirac}} = \delta^{ab}\delta_{AB} - \frac{1}{9}(\Gamma^a\Gamma^b)_{AB} \quad \Rightarrow \quad \{\phi_A^a, \phi_B^b\} = G^{ab}\delta_{AB}$$

 $\Rightarrow$  manifest SO(1,9) = invariance group of mini-superspace WDW Hamiltonian with DeWitt metric  $G_{ab}$  instead!

From analysis of known  $K(E_{10})$  transformation acting in RS representation we extract a *second quantised realisation* of  $\hat{J}(\alpha)$  *for all real roots*  $\alpha \in \Delta(E_{10})$ :

$$\hat{J}(\alpha) = \left(-\frac{1}{2}\alpha_{a}\alpha_{b} + \frac{1}{4}G_{ab}\right)\phi^{a}\Gamma(\alpha)\phi^{b} \quad \forall \text{ roots obeying } \alpha^{2} = 2$$

New realization with 'spin- $\frac{5}{2}$ ' fermions [Kleinschmidt, HN.:1307.0413]

$$\{\phi_A^{\texttt{ab}}\,,\,\phi_B^{\texttt{cd}}\} = G^{\texttt{a}(\texttt{c}}G^{\texttt{d})\texttt{b}}\delta_{AB} \qquad (\phi_A^{\texttt{ab}} = \phi_A^{\texttt{ba}})$$

Berman-Serre relations are satisfied on  ${\mathcal F}$  with

$$\hat{J}(\alpha) = X(\alpha)_{\rm ab\,\,cd}\,\phi^{\rm ab}\Gamma(\alpha)\phi^{\rm cd}$$

and

$$X(\alpha)_{\mathtt{ab\,cd}} = \frac{1}{2} \alpha_{\mathtt{a}} \alpha_{\mathtt{b}} \alpha_{\mathtt{c}} \alpha_{\mathtt{d}} - \alpha_{(\mathtt{a}} G_{\mathtt{b})(\mathtt{c}} \alpha_{\mathtt{d}}) + \frac{1}{4} G_{\mathtt{a}(\mathtt{c}} G_{\mathtt{d})\mathtt{b}}$$

again for all real roots  $\alpha$ . Could also be coupled to  $E_{10}/K(E_{10})$  sigma model to go beyond supergravity! Similar ansatz also works for for spin- $\frac{7}{2}$  fermions:

$$\left\{\phi_A^{\mathtt{abc}}, \phi_{\mathtt{def}\,B}\right\} = \delta_{(\mathtt{d}}^{(\mathtt{a}}\delta_{\mathtt{e}}^{\mathtt{b}}\delta_{\mathtt{f}}^{\mathtt{c})}\delta_{AB}$$

# Berman-Serre relations are again obeyed with $\hat{J}(\alpha) = X(\alpha)_{\tt abc\, def}\,\phi^{\tt abc}\Gamma(\alpha)\phi^{\tt def}$

and

$$\begin{split} X_{\mathsf{abc}}^{\mathsf{def}}(\alpha) &= -\frac{1}{3} \alpha_{\mathsf{a}} \alpha_{\mathsf{b}} \alpha_{\mathsf{c}} \alpha^{\mathsf{d}} \alpha^{\mathsf{e}} \alpha^{\mathsf{f}} + \frac{3}{2} \alpha_{(\alpha} \alpha_{\mathsf{b}} \delta_{\mathsf{c})}^{(\mathsf{d}} \alpha^{\mathsf{d}} \alpha^{\mathsf{e}} \alpha^{\mathsf{f}}) - \frac{3}{2} \alpha_{(\mathsf{a}} \delta_{\mathsf{b}}^{(\mathsf{d}} \delta_{\mathsf{c})}^{\mathsf{e}} \alpha^{\mathsf{f}}) \\ &+ \frac{1}{4} \delta_{(\mathsf{a}}^{(\mathsf{d}} \delta_{\mathsf{b}}^{\mathsf{e}} \delta_{\mathsf{c})}^{\mathsf{f}}) + \frac{1}{12} (2 - \sqrt{3}) \alpha_{(\mathsf{a}} G_{\mathsf{bc})} G^{(\mathsf{de}} \alpha^{\mathsf{f}}) \\ &\frac{1}{12} (-1 + \sqrt{3}) \left( \alpha_{\mathsf{a}} \alpha_{\mathsf{b}} \alpha_{\mathsf{c}} G^{(\mathsf{de}} \alpha^{\mathsf{f}}) + \alpha_{(\mathsf{a}} G_{\mathsf{bc})} \alpha^{\mathsf{d}} \alpha^{\mathsf{e}} \alpha^{\mathsf{f}} \right) \end{split}$$

As before,  $\hat{J}(\alpha)$  provides a realisation *for all* real roots.

Conjecture: there exists an *infinite tower* of ever increasing finite-dimensional fermionic representations that capture more and more of  $K(E_{10})$ . [Kleinschmidt,HN(2013)]

Associated quotient groups  $Q_V = K(E_{10})/\mathcal{N}_V$  (with  $\mathcal{N}_V \equiv$ " $\exp(\mathfrak{i}_V)$ " = 'normal subgroup' associated with ideal  $\mathfrak{i}_V$ ) can be viewed as 'generalized holonomy groups'.

### Major Challenges

- Understanding K(E<sub>10</sub>), and thus E<sub>10</sub>, via an infinite tower of ever increasing unfaithful representations? [cf. ongoing work with A. Kleinschmidt, R. Koehl and R. Lautenbacher]
- Associated quotient groups  $Q_V = K(E_{10})/\mathcal{N}_V$  would capture more and more of the group  $K(E_{10})$ :

 $Q_{1/2} = SO(32), \quad Q_{3/2} = SO(32, 288),$  $Q_{5/2} = SO(288, 1472), \quad Q_{7/2} = SO(1472, 5568), \cdots$ 

**NB:**  $Q_V$  not subgroups of  $K(E_{10})$ , and non-compact!

- $\Rightarrow$  K(E<sub>10</sub>) as some kind of projective limit?
- Probably needed to see how  $K(E_{10})$  'unfolds' to give rise to emergent space-time fermions, and to see whether/how  $K(E_{10})$  is broken to SM symmetries.

While it may take a long time to figure this out we can still search for *observable signatures* of this scheme.

#### **Curious Gravitinos**

[K.Meissner,HN: PRD100(2019)035001]

Under  $SU(3)_c \times U(1)_{em}$  gravitinos transform as

$$\left(\mathbf{3}_{c}, \frac{1}{3}\right) \oplus \left(\bar{\mathbf{3}}_{c}, -\frac{1}{3}\right) \oplus \left(\mathbf{1}_{c}, \frac{2}{3}\right) \oplus \left(\mathbf{1}_{c}, -\frac{2}{3}\right)$$

Unusual features:

- strong and electromagnetic interactions  $\Rightarrow$
- would have been seen *unless* mass is very high, and cosmological abundance *extremely low*
- would be stable against decay into SM matter because of peculiar quantum numbers  $\Rightarrow$  can disappear only via mutual annihilation.

 $[ \rightarrow \text{very different from } N = 1 \text{ MSSM gravitinos, which are un$ charged under SM symmetries, and interact only weakly]

## Not the usual Dark Matter Candidate

- No SUSY: all gravitinos have masses  $\sim M_{\rm PL}$
- Color triplet gravitinos should form (fractionally charged!) color singlet bound states with ordinary quarks ⇒ all states stable despite large mass!
- DM mass density in solar system ~  $10^6 \text{ GeV/m}^3 \Rightarrow 10^{-13} \text{ gravitinos/m}^3 \Rightarrow \text{flux } \Phi \lesssim 0.003 \text{ m}^{-2} \text{ yr}^{-1} \text{ sr}^{-1}$
- Despite strong and electromagnetic interactions can easily pass through Earth because of large mass.
- Non-relativistic  $\Rightarrow$  time of flight measurements?
- Idea: look for long ionized tracks in ultrastable material (rock, diamond,...?) → need a 'paleo-detector'
   [see e.g.:J.Bramante et al., 1803.08044[hep-ph];S.Baum et al., 1806.05991[astro-ph.CO]]

# **Explaining UHECRs?**

[K.Meissner, HN: JCAP1909(2019)041]

*New mechanism:* color triplet gravitinos could explain observed UHECR events via gravitino-antigravitino annihilation in the 'skin' of neutron stars, provided

- Gravitinos get absorbed into stars ...
- ... and get 'compressed' in neutron stars so as to enable them to annihilate in appreciable rates

New features:

- could explain dominant appearance of ions (rather than protons) towards very highest energies
- with some 'reasonable' assumptions calculated event rates come close to the ones observed at Pierre Auger Observatory (in Argentina)
- $\Rightarrow$  Hints of  $E_{10}$  and  $K(E_{10})$  in the sky?

## Outlook

- $E_{10}$  and  $K(E_{10})$  unify and generalize known duality symmetries of supergravity and string theory.
- Understanding  $K(E_{10})$  fermions could greatly help towards understanding  $E_{10}$  (otherwise hopeless?)
- All results obtained so far indicate that  $E_{10}$  requires a setting beyond known concepts of space and time.
- However: explaining how this emergence works in detail remains *the* outstanding challenge!
- Intriguing links between  $K(E_{10})$  and SM fermions:  $\rightarrow$  can  $E_{10}$  and  $K(E_{10})$  supersede supersymmetry as a guiding principle towards unification?
- Ultimate hope: no multiverse, but an actual explanation why low energy world is the way it is...

#### Points de Rencontre

- B. Julia and HN, "Null-Killing vector dimensional reduction and Galilean geometrodynamics", Nucl. Phys. B439 (1995) 291
- B. Julia and HN, "Conformal internal symmetry of 2d sigma models coupled to gravity and a dilaton", Nucl. Phys. B482 (1996) 431
- T. Damour, M. Henneaux, B. Julia and HN, "Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models", Phys. Lett. B509 (2001) 323

Joyeux Emeritat et Joyeux Noël!