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Towering Achievements

[ ) MaXimal SupergraVity [Cremmer, Julia,Scherk(1978) ;Cremmer, Julia(1979)]
e Hidden exceptional duality symmetries (cremer, julia(1979)]
e Emergence of L) in reduction to D = 17 (juiaci9s2)]

e ... as well as many others



N = 8 Supergravity

Unique theory (modulo gauging), most symmetric known
field theoretic extension of Einstein’s theory

1x[2] & 8x

;] o 28x[1] @ 56x B] & 70 (0]

— descends from D=11 SUGRA (cremer, julia,Scherk(1978)]

In the late 1970s this theory was thought to be a
promising candidate for a unified theory of quantum
gravity and matter interactions. However,

e Question of UV finiteness (or not)?

e Phenomenology (chiral fermions, SUSY breaking,
huge negative cosmological constant,...)?

Nevertheless: large part of work since 1980s on string
unification is really based on, or inspired by maximal
supergravity and its hidden symmetries E;, Eg,...!



Finiteness: to be or not to be?

We now know that N =8 supergravity is more finite
than expected: behaves like N =4 super-Yang-Mills up

to ii)lll' 1()()I)S [Bern,Carrasco,Dixon, Johansson, Roiban, PRL103(2009)081301]

e However: recent computation at five loops shows
divergence at D:25—4:2—|—% < 25—6:4—|—% (for L =5)

[Bern,Carrasco,Chen,Edison, Johansson,Parra-Martinez,Roiban, PRD98(2018)086021]

Thus: question of finiteness is still up in the air —

Although no fully supersymmetric and fully E;+ in-
variant counterterm known, finiteness would probably
still require novel (so far hidden) symmetries...

But even if N =8 Supergravity is finite to all orders:
e what about non-perturbative quantum gravity?

e is there any relation to real physics?



Phenomenology: early (failed) attempts

1. Focus on vector-like SU(3) x U(1) € SO(8), with identifica-
tions SU(3) = SU(3). and U(1) = U(1).,, [Gell-Mann(1978)]
— does not work: color sextets and octets

2. Following a suggestion by Cremmer and Julia: elevate (chiral)
R symmetry SU(8) to a dynamical symmetry — 3 x (5@ 10)
fermions of SU(5) GUT 4 much more (E11is,Gaillard, Zunino (1981)]

3. Or: unitary irreps of E;)7 [E11is,caillard,Ginaydin, Zunino(1982)]

Main problem with 2. and 3.: too much junk! (much
like for low energy SUSY /MSSM model building...)

Prevailing view (since about 1982): N =8 supergravity
is obviously not a good candidate for quantum gravity
and the unification of all interactions!

However: 56 — 8 = 48 = 3 x 16!



A strange coincidence?

SO(8) — SU(3)xU(1) breaking and ‘family-color locking’

(u,c,t)p : 3:x3;—>8d1, +%=§—q
(@, ¢, t)r 3.x3; >8d1, _%:_ngq
(d,s,b) : 3.X3;—>6d3, _é:_%+q
(d,5,b)r : 3. x3; -6D®3, +%:%_q
(e p 7 )L ¢ 1. x3f— 3, —g:—l—l—q
(et ut 7L 1. x3f— 3, +2=1—q
(Ve s Vu, vr)L 1. x3r—3, _é:()_q
(Pe Dy e lex3f—3, +%=0+q

Supergravity and Standard Model assignments agree
if spurion charge is chosen as ¢ = % [Gell-Mann (1983)]

Realized at SU(3)xU(1) stationary point! rarner,mv, wer2se(ioss)aiz)
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FExclusion limits, nothing but exclusion limaits, ...

e No hints whatsoever of new physics

e RG Evolution of (slightly amended) SM couplings: no Landau
poles, no instabilities of effective potential up to Planck scale

Conclusion (so far, at least): SM could survive more

or less as 1s all the way to Planck scale Mp; !



Fixing the U(1) mismatch
[Meissner,HN: Phys.Rev.D91(2015)065029]

Spurion charge shift can be realised as exp(;wZ)
1
I=5(TAIATHIATALI+INIAT+TATAT) = 7" = -1

acting on 56 fermions Y”/* in 8 A 8 A 8 of SU(8), with

(010 000 0 0)
1 00000 0 0
00 0-100 0 0
001 00O0O0 0 )
=10 000 0-10 0 m=-1
0000100 0
000000 0 —1
\0 000001 0)

However: 7 is not in SU(8) = K(E;) =
mismatch can not be fixed within N = 8 supergravity.

Claim: to accommodate deformed U(1) we have to go
all the way to K(E;;) (and thus E;)!



Duality symmetries: all in one (= Eqg)?
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Fermions and K(Eq)

... probably a key issue for further progress...

Important point: maximally supersymmetric theories
not based on (hypothetical) superextensions of F:

e There is no proper superextension of FE, for any n.

e For D > 3 supergravity fermions transform in
mazximal compact subgroup K(E,) C E,,, e.g.

K(E7) = SU(8) fermions € 8 and 56
K(Eg) = Spin(16)/7, fermions € 16, and 128.
e The associated (double-valued) fermion representa-
tions are not ‘liftable’ to F, representations

e Expect all of this to remain true for K(Ey) C Ey.



What is K(Eqg)?

For E), the ‘maximal compact’ subalgebra is defined
as the fixed point algebra of the Chevalley involution

wle;) =—fi, w(fi)=—e;, w(hy)=—h;

together with invariance property [w(z),w(y)| = w([z, y])
= E10 = K(Em) & K(Elo)i , r = CU(SC) for x € K(Em)

This definition is analogous to the corresponding one for the

finite-dimensional case, e.g. z = w(z) € so(n) C sl(n) for w(z) = —a!,

with corresponding decomposition sl(n) = so(n) ® so(n)*
Consequently, K(Ey) is generated by
X; = ei—fi:w(xi) ’L,], — 1,,10



with Berman-Serre relations (for E;; Dynkin diagram)
[:1:2-, :cj] = 0 if 1 and j are non-adjacent
i, [xi, z]| + 25 = 0 if 1 and j are adjacent
Theorem: each set of {x;} satisfying the above rela-
tions provides a realization of K(Ejp). (s sernanci9s9)]

Involutory subalgebra K(Ey) C Ey is spanned by {J}
Jo=FE —FE _, acA (Eyp), r=1, . muta)

But: K(Eq)) is co-dimensional and a very strange beast!

e K(Eyy) is not a Kac—Moody algebra [kieinschmidt,HN: 0QG22(2005)4457]
e K(Ejp) has finite-dimensional (unfaithful) representations
e = K(Eyy) is not simple (= has non-trivial ideals)

e No faithful (infinite-dimensional) representations are known



Unfaithful representations

<= existence of non-trivial ideals iy in K(E)!

More precisely: for unfaithful representation V' the
associated ideal is

ly = {x e K(Eq) ’$ v =0%Yv € V} C K(Eq)
For known examples, iy has finite co-dimension in K(E)
= iy = K(E) © iy is not a subalgebra of K(E).

(is spanned by non-convergent sums) [Kleinschmidt,Palmkvist,HN: JHEP (2007)051]

Analysis of fermionic sector of D=11 SUGRA =

Spin-% (‘Dirac representation’ V/): raesuy1, senneaux, Paulot (2005)]
1 1 1
EFabX7 ‘]C(ngx — érabcx

Spin-% (‘Rarita-Schwinger representation’ V3/5) wxu,dzip(2006);

Tx =

1 1 a c a c
T = STantbe + 20107, I 0 = STt + 40T = Ty,



Multiple commutators generate full K(E;)) algebra:

1 1 de 0) f
[Jébia Jc(leH = chbzdef + 5[[ab | etc.

Rarita-Schwinger equation can be reformulated as a
‘K(E19) covariant Dirac equation’. amour Kieinschmids,i(2006)]

Spin-% representation contains IIA and IIB fermions,

respectively, upon decomposition under corresponding
(finite-dimensional) subgroups of K(Ejj) mieinschniaz,mi2006)]

More specifically: Rarita-Schwinger representation —
8 gravitinos and 56 spin—% fermions of maximal N =8
supergravity at one spatial point form an unfaithful
irreducible spinorial representation of K(Ej).

Fermionic structure of N =8 supermultiplet can thus be viewed

as a consequence of K(E;)) rather than supersymmetry!

Idem for 8 massive gravitinos and 48 spin—% fermions



Why 7 belongs to K(Ejg)

[Kleinschmidt ,HN:Phys.Lett.B747 (2015)]

D=11 fermions in Coulomb gauge split as (a =1,2,3; a=14,...,10)
\Ija . (\Ifa

i)

¥y withi j=1,...,8 and a=1,2,3,4

N =8 supergravity fermions from D =11 gravitino [Cremmer,Jjulia(1979)]

oc\I/“——ZF fy’ya\lfc oYY eraw
With redefined variables ®3 = I') ;W% (no summation!) [panour,Hillmann]
OXijk = (T AT AT X > 0%, = T;;03, (%)

Latter formula provides a realization of 7 on all fermions.
For any real Eiy root o we have (with o = G®qy,) [Kieinschmidt,Hn]
a 1 a 1 a b
da)ds = —50 + Z(Sb () apPy

Thus need only find linear combination to reproduce (%), which

is possible because there are infinitely many real roots in Ey.



The proof requires over-extended root of E;; = no way
to realise ¢-shift with finite-dimensional R symmetries!

More properly, this representation is acted on by

Q3/2 — K(E10>/N3/2 = 80(32, 288)
where N; /2 1s the ‘normal subgroup’ generated by the
RS ideal in K(Ej9) — but 93/, is not a subgroup of K(Ej).

In recent work we have been able to embed full SM
group SU(3). x SU(2), x U(1)y into Q3 together with
a family symmetry SU(3); which does not commute
with electroweak symmetries. (meissner,mn, PRL121(2018)091601]

Big open questions: how does K(E;)) ‘unfold’ to give
rise to spatial dependence and space-time symmetries?

And why and how is K(F() broken to SM symmetries?



Higher spin realizations of K (Eg)

— trying to break out of the confines of supergravity!

But first need to re-write spin—% by means of crucial
redefinition manour,Hil1mann:0906.3116]

32
= ZF%B@% (no sum on a!)
B=1

Re-definition breaks manifest Lorentz symmetry, but:

1
{Wxa w%}Dirac — 5ab5AB - §<FGF6)AB = {Cbil, qﬁ%} = Gab(SAB

= manifest SO(1,9) = invariance group of mini-superspace
WDW Hamiltonian with DeWitt metric G,;, instead!

From analysis of known K(E;)) transformation acting
in RS representation we extract a second quantised

realisation of J(«) for all real roots o € A(Ey):



- 1 1
J(a) = (—§Ozaab + ZGab) T ()" V roots obeying o’ = 2

New realization with ‘spin-; 2% fermions [xieinschnids,my. :1307.0413)

{qbilb, ¢CBd} — Ga ch b5AB ( ;aqb — Ela>
Berman-Serre relations are satisfied on F with
j(O‘) = X(O‘)ab cd ¢abr(a)¢6d

and ' '
X(a)ab cd — §aaabacad - a(aGb)(cad) + ZGa(ch)b

again for all real roots a. Could also be coupled to
F10/K(E1y) sigma model to go beyond supergravity!

Similar ansatz also works for for spin-Z fermions:

{95, Gaes B} =90 d5§ ) 5



Berman-Serre relations are again obeyed with

j(@> — X(@>abc def ¢abcr(a>¢def

and
X def( . 4 e £, O s9qd00 f)_§ sldse o)
abe () = —30ataca e’ — 5 atwlga e’ a0y Oyt
1 1
)+ Lo Vo ata
1
1—2( — 1+ \/§) (ozaozboch(deozf) + oz(aGbC)ozdozeozf)

AN

As before, J(«) provides a realisation for allreal roots.

Conjecture: there exists an infinite tower of ever in-
creasing finite-dimensional fermionic representations
that capture more and more of K(Ej). wieinschmiat,m2013)]

Associated quotient groups Qy = K(Eo) /Ny (with Ny, =
“exp(iy)” = ‘normal subgroup’ associated with ideal i)
can be viewed as ‘generalized holonomy groups’.



Major Challenges

e Understanding K(Ey), and thus E,j, via an infinite

tower of ever increasing unfaithful representations?
[cf. ongoing work with A. Kleinschmidt, R. Koehl and R. Lautenbacher]

e Associated quotient groups Qy = K(E;)/Ny would
capture more and more of the group K(F):

Qiy = SO(32), Qs = SO(32,288) .
Qs/y = SO(288,1472) , Q7 = SO(1472,5568) , - --
NB: 9y not subgroups of K(E;;), and non-compact!
e = K(E;;) as some kind of projective limit?

e Probably needed to see how K(E;;) ‘unfolds’ to give
rise to emergent space-time fermions, and to see
whether /how K(Ey)) is broken to SM symmetries.

While it may take a long time to figure this out we can
still search for observable signatures of this scheme.



Curious Gravitinos

[K.Meissner,HN: PRD100(2019)035001]

Under SU(3). x U(1)., gravitinos transform as

(2) (3o (o ()

Unusual features:
e strong and electromagnetic interactions =-

e would have been seen unless mass is very high, and
cosmological abundance extremely low

e would be stable against decay into SM matter be-
cause of peculiar quantum numbers = can disap-
pear only via mutual annihilation.

[ — very different from N =1 MSSM gravitinos, which are un-

charged under SM symmetries, and interact only Weakly]



Not the usual Dark Matter Candidate

e No SUSY: all gravitinos have masses ~ Mpr,

e Color triplet gravitinos should form (fractionally
charged!) color singlet bound states with ordinary
quarks = all states stable despite large mass!

e DM mass density in solar system ~ 10° GeV/m’ =
1071 gravitinos/m’ = flux ® <0.003 m2 yr~! sr!

e Despite strong and electromagnetic interactions can
easily pass through Earth because of large mass.

e Non-relativistic = time of flight measurements?

e Idea: look for long ionized tracks in ultrastable ma-

terial (rock, diamond,...?) — need a ‘paleo-detector’
[see e.g.:J.Bramante et al.,1803.08044 [hep-ph];S.Baum et al., 1806.05991[astro-ph.C0]]



Explaining UHECRSs?
[K.Meissner, HN: JCAP1909(2019)041]

New mechanism: color triplet gravitinos could explain
observed UHECR events via gravitino-antigravitino an-
nihilation in the ‘skin’ of neutron stars, provided

e Gravitinos get absorbed into stars ...
e ... and get ‘compressed’ in neutron stars so as to
enable them to annihilate in appreciable rates

New features:
e could explain dominant appearance of ions (rather
than protons) towards very highest energies

e with some ‘reasonable’ assumptions calculated event
rates come close to the ones observed at Pierre

Auger Observatory (in Argentina)
= Hints of E;y and K(E() in the sky?



Outlook

e £y and K(Eyy) unify and generalize known duality
symmetries of supergravity and string theory.

e Understanding K(E,;) fermions could greatly help
towards understanding E;; (otherwise hopeless?)

e All results obtained so far indicate that E;; requires
a setting beyond known concepts of space and time.

e However: explaining how this emergence works in
detail remains the outstanding challenge!

e Intriguing links between K(E;;) and SM fermions:
— can Eig and K(Ey) supersede supersymmetry as
a guiding principle towards unification?

e Ultimate hope: no multiverse, but an actual expla-
nation why low energy world is the way it is...
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Joyeux Emeritat et Joyeux Noel!



