On Broken Supersymmetry and Vacuum Stability in Supergravity and String Theory

Augusto Sagnotti
Scuola Normale Superiore and INFN - Pisa

Based on: 1811.11448, 1711.11494, 1612.08566[hep-th] and refs therein
As and 1 . Mourad, to appear

We are here to celebrate our friend Bernard Julia

ALSO: a Trio and a Masterpiece (Eugene Cremmer, Bernard Julia and Joel Scherk)

$$
\begin{aligned}
& \mathcal{S}= \frac{1}{2 k_{11}^{2}} \int d^{11} x e\left[e_{A}^{M} e_{B}^{N} R_{M N}^{A B}(\omega)\right. \\
&- i \bar{\psi}_{M} \gamma^{M N P} D_{N}\left(\frac{\omega+\hat{\omega}}{2}\right) \psi_{P}-\frac{1}{24} F_{A B C D} F^{A B C D} \\
&- \frac{i \sqrt{2}}{192}\left(\bar{\psi}_{M} \gamma^{M N A B C D} \psi_{N}+12 \bar{\psi}^{A} \gamma^{C D} \psi^{B}\right)\left(F_{A B C D}+\widehat{F}_{A B C D}\right) \\
&-\left.\frac{2 \sqrt{2}}{(144)^{2}} \epsilon^{A_{1} \ldots A_{4} B_{1} \ldots B_{4} M N P} F^{A_{1} \ldots A_{4}} F^{B_{1} \ldots B_{4}} A_{M N P}\right] \\
& \delta e_{M}^{A}=\frac{i}{2} \bar{\epsilon} \gamma^{A} \psi_{M}, \\
& \delta \psi_{\mu}=D_{M} \epsilon+\frac{\sqrt{2}}{288}\left(\gamma^{A B C D}{ }_{M}-8 \delta_{M}^{A} \gamma^{B C D}\right) F_{A B C D} \epsilon, \\
& \delta A_{M N P}=-\frac{3 \sqrt{2} i}{4} \bar{\epsilon} \gamma_{[M N} \psi_{P]} \\
& \hline
\end{aligned}
$$

The Problem

The (SUSY) 10D-11D Zoo

- 11D: highest point of (SUSY) String Theory
- Exhibits dramatically our limits
- Solid arrows \rightarrow perturbative
- 10\&11D supergravity \rightarrow Dashed arrows
- SUSY: stabilizes these 1OD Minkowski vacua

BROKEN SUSY?

Vacuum Configurations \& String Theory

- NO SUSY \rightarrow TACHYONS!

- NO - TACHYONS ? MAJOR RESULT \rightarrow G. S. O. \& SUSY-SUGRA
(Gliozzi, Scherk, Olive, 1977)
- MOREGENERALLY NOTACHYONS \rightarrow YES!
* 3 D=10 SUSY STRINGS: $\quad-\operatorname{SO}(16) \times S O(16)$ (HETEROTIC)
- U(32) O'B (ORIENTIFOLD)
- Usp(32) (ORIENTIFOLD) \rightarrow "Brane SUSY Breaking" (HIDDEN SUSY)
(Sugimoto, 1999, Antoniadis, Dudas, AS, 1999)
(Dixon, Hawey, 1986)
(Alvarez-Gaumē, Ginsparg, Moore, Vafa, 1986)
(AS, 1995)

10D (Closed) Superstrings

* Building principles of (closed) string spectra \& vacuum energy:
- spin-statistics (GSO projections)
- modular invariance (Gliozzi, Scherk, Olive, 1977)

- $11 \mathrm{~A}, \| \mathrm{II}:$

$$
\mathcal{T}_{I I A}=\int_{\mathcal{F}} \frac{d^{2} \tau}{(I m \tau)^{2}} \frac{\left(V_{8}-S_{8}\right)\left(\bar{V}_{8}-\bar{C}_{8}\right)}{(I m \tau)^{4} \eta^{8} \bar{\eta}^{8}} \quad \mathcal{T}_{I I B}=\int_{\mathcal{F}} \frac{d^{2} \tau}{(I m \tau)^{2}} \frac{\left|V_{8}-S_{8}\right|^{2}}{(I m \tau)^{4} \eta^{\bar{~}} \bar{\eta}^{8}}
$$

$$
\begin{array}{ll}
I I A: & \left(e_{\mu}^{a}, B_{\mu \nu}, \phi, \psi_{\mu L+R}, \psi_{L+R}, A_{\mu}, C_{\mu \nu \rho}\right) \\
I I B: & \left(e_{\mu}^{a}, B_{\mu \nu}^{1,2}, \phi^{1,2}, \psi_{\mu L}^{1,2}, \psi_{R}^{1,2}, D_{\mu \nu \rho \sigma}^{+}\right)
\end{array}
$$

- HE, HO: $\tau_{H E}=\int_{\mathcal{F}} \frac{d^{2} \tau}{I m \tau^{2}} \frac{\left(V_{8}-S_{8}\right)\left(\bar{O}_{16}+\bar{S}_{16}\right)^{2}}{I m \tau^{4} \eta^{8} \bar{\eta}^{8}} \quad \tau_{H O}=\int_{\mathcal{F}} \frac{d^{2} \tau}{I m \tau^{2}} \frac{\left(V_{8}-S_{8}\right)\left(\bar{O}_{32}+\bar{S}_{32}\right)}{I m \tau^{4} \eta^{8} \bar{\eta}^{8}}$
$H E:\left(e_{\mu}^{a}, B_{\mu \nu}, \phi, \psi_{\mu L}, \psi_{R}\right) \oplus\left(E_{8} \times E_{8}\right.$ super YM $)$ $H O:\left(e_{\mu}^{a}, B_{\mu \nu}, \phi, \psi_{\mu L}, \psi_{R}\right) \oplus(S O(32)$ super YM $)$

$$
\text { SUSY: } V_{8}=S_{8}=C_{8}
$$

- OA, OB:
- $\mathrm{H}_{16 \times 16}$:

$\left(e_{\mu}^{a}, B_{\mu \nu}, \phi\right) \oplus A_{\mu}^{(120,1) \oplus(1,120)} \oplus \psi_{L}^{(128,1) \oplus(1,128)} \oplus \psi_{R}^{(16,16)}$

SUSY Breaking (in String Theory)

- (CIRCLE) SCHERK-SCHWARZ: MODIFY KALUZA-KLEIN FOR FERMIONS

$$
p_{B}=\frac{m}{R}\left[\psi_{B}(x+2 \pi R)=\psi_{B}(x)\right] \quad p_{F}=\frac{m+\frac{1}{2}}{R} \quad\left[\psi_{F}(x+2 \pi R)=-\psi_{F}(x)\right]
$$

(Scherk Schwarz, 1979)

- [N=8 SUGRA \& DIVERGENCE CANCELATIONS] (Cremmer, Scherk, Schwarz, 1979, Segin, van Niuwenhuizen, 1982)
- BUT: MORE SUBTLE \& COMPLICATED IN STRING THEORY
(Rohm, 1984; Ferrara, Kounnas, Porrati, Zwirner, 1989)

- [MODULAR INVARIANCE \rightarrow twisted sector with TACHYONS if $\mathcal{M}_{B}-\mathcal{M}_{F} \left\lvert\, \gtrsim \frac{1}{\sqrt{\alpha^{\prime}}}\right.$

10D Tachyon-Free Orientifolds

$\left(e_{\mu}^{a}, B_{\mu \nu}, \phi, \psi_{\mu}, \psi\right) \oplus\left(A_{\mu}^{(a b)}, \lambda^{[a b]}\right), \quad$ USp(32) gauge group \quad (Sugimoto, 1999)

Only sign flip w.r.t. type-I SUSY SO(32)!

Brane SUSY Breaking in String Theory

(Sugimoto, 1999)
(Antoniadis, Dudas, AS, 1999)
(Angelantoni, 1999)
(Aldazabal, Uranga, 1999)

- SO(32): $\mathrm{N}(\mathrm{N}-1) / 2$ vectors and spinors
- $\operatorname{Usp}(32): \mathrm{N}(\mathrm{N}+1) / 2$ vectors, $\mathrm{N}(\mathrm{N}-1) / 2$ spinors \supset GOLDSTINO

[Constrained Superfields in $D=4]$

- Consider an $O(N)$ invariant scalar model:
- For $\lambda \rightarrow \infty$: a σ-model describing the dynamics in the valley of minima

$$
\begin{array}{r}
\mathcal{S}=\int d^{D} x\left[-\frac{1}{2} \partial_{\mu} \phi^{T} \partial^{\mu} \phi-\lambda\left(\phi^{T} \phi-\rho^{2}\right)^{2}\right] \\
\mathcal{S}=-\int d^{D} x \frac{1}{2} \partial_{\mu} \phi^{T} \partial^{\mu} \phi, \quad \phi^{T} \phi=\rho^{2}
\end{array}
$$

* In Wess-Zumino multiplet of 4D SUSY, when the scalar becomes very massive
- A fermion with broken SUSY.
(Casalbuoni, De Curtis, Dominici, Feruglio, Gatto, 1989) (Komargodski, Seiberg, 2009)

Volkov-Akulov (1973) model (up to field redefinitions)

$$
\mathcal{S}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta}\left[\bar{\Phi} \Phi+\lambda(\bar{\Phi} \Phi)^{2}\right]+\int d^{4} x d^{2} \theta f \Phi+\text { h.c. }
$$

$$
\lambda \rightarrow \infty: \quad \Phi=\frac{\psi^{\alpha} \psi_{\alpha}}{2 F}+\theta^{\alpha} \psi_{\alpha}+\frac{\theta^{2}}{2} F, \quad \Phi^{2}=0 \quad[F \neq 0]
$$

Cosmological Potentials

- What potentials lead to slow-roll, and where?

$$
d s^{2}=-d t^{2}+e^{2 A(t)} d \mathbf{x} \cdot d \mathbf{x}
$$

$$
\ddot{\phi}+3 \dot{\phi} \sqrt{\frac{1}{3} \dot{\phi}^{2}+\frac{2}{3} V(\phi)}+V^{\prime}=0
$$

Driving force from V^{\prime} vs friction from V

- If V does not vanish : convenient gauge "makes the damping term neater"

$$
\begin{aligned}
& d s^{2}=e^{2 \mathcal{B}(t)} d t^{2}-e^{\frac{2 \mathcal{A}(t)}{d-1}} d \mathbf{x} \cdot d \mathbf{x} \\
& V e^{2 \mathcal{B}}=V_{0} \\
& \tau=t \sqrt{\frac{d-1}{d-2}}, \quad \varphi=\phi \sqrt{\frac{(d-1)}{2(d-2)}}
\end{aligned} \begin{array}{r}
\dot{\mathcal{A}}^{2}-\dot{\varphi}^{2}=1 \\
\ddot{\varphi}+\dot{\varphi} \sqrt{1+\dot{\varphi}^{2}}+\frac{V_{\varphi}}{2 V}\left(1+\dot{\varphi}^{2}\right)=0
\end{array}
$$

- Now driving from $\log V$ vs O (1) damping

$$
V=\varphi^{n} \longrightarrow \frac{V^{\prime}}{2 V}=\frac{n}{2 \varphi}
$$

- Quadratic potential?

Far away from origin
(Linde, 1983)

Exponential potential? YES or NO

$$
V(\varphi)=V_{0} e^{2 \gamma \varphi} \longrightarrow \frac{V^{\prime}}{2 V}=\gamma
$$

The Climbing Scalar

$$
\gamma=1 \text { is "critical": LM attractor \& descending solution disappear there and beyond! }
$$

CLIMBING: BSB (Usp(32)) and U(32) HAVE PRECISELY $\gamma=1$! [ALL 3 TACHYON-FREE MODELS \rightarrow exponential potentials with $\gamma \geq 1$]!

- $\gamma=1$:

$$
\begin{aligned}
& \varphi(\tau)=\varphi_{0}+\frac{1}{2}\left[\log \left|\tau-\tau_{0}\right|-\frac{1}{2}\left(\tau-\tau_{0}\right)^{2}\right] \\
& \mathcal{A}(\tau)=\mathcal{A}_{0}+\frac{1}{2}\left[\log \left|\tau-\tau_{0}\right|+\frac{1}{2}\left(\tau-\tau_{0}\right)^{2}\right.
\end{aligned}
$$

Critical Exponentials and BSB

$$
\mathcal{S}=\frac{1}{2 k_{N}^{2}} \int d^{10} x \sqrt{-\operatorname{det} g}\left[R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-T e^{\frac{3}{2} \phi}+\ldots\right] \quad \longrightarrow \quad \gamma=1 \text { (for } \varphi \text {) }
$$

- D<10: two combinations of ϕ and "breathing mode" $\sigma \rightarrow\left(\Phi_{s^{\prime}} \Phi_{t}\right)$
- Φ_{t} yields a "critical" φ potential $(\gamma=1)$ if Φ_{s} is stabilized

$$
S_{d}=\frac{1}{2 \kappa_{d}^{2}} \int d^{d} x \sqrt{-g}\left[R+\frac{1}{2}\left(\partial \Phi_{s}\right)^{2}+\frac{1}{2}\left(\partial \Phi_{t}\right)^{2}-T_{9} e^{\sqrt{\frac{2(d-1)}{d-2}} \Phi_{t}}+\ldots\right]
$$

- If Φ_{s} is stabilized: a p-brane that couples via $\left(g_{s}\right)^{-\alpha}$ [the D9-brane we met before had $p=9, \alpha=1$]

$$
\gamma=\frac{1}{12}(p+9-6 \alpha) \quad V=V_{0}\left(e^{2 \varphi}+e^{2 \gamma \varphi}\right) \quad(\gamma<1)
$$

Fast-Roll and Mukhanov-Sasaki Equation

- MS equation :
- Limiting W_{s} :
- Power:

$$
P(k)=\frac{k^{3}}{2 \pi^{2}}\left|\frac{v_{k}(-\epsilon)}{z(-\epsilon)}\right|^{2}
$$

* Pre - inflationary fast roll : $P(k) \sim k^{3}$

WKB : $\quad v_{k}(-\epsilon) \sim \frac{1}{\sqrt[4]{\left|W_{s}(-\epsilon)-k^{2}\right|}} \exp \left(\int_{-\eta^{*}}^{-\epsilon} \sqrt{\left|W_{s}(y)-k^{2}\right|} d y\right)$

(Chibisov, Mukhanov, 1981)

Pre-Inflationary Relics in the CMB?

- Extend $\Lambda C D M$ to allow for low- ℓ suppression:

$$
\mathcal{P}(k)=A\left(k / k_{0}\right)^{n_{s}-1} \rightarrow \frac{A\left(k / k_{0}\right)^{3}}{\left[\left(k / k_{0}\right)^{2}+\left(\Delta / k_{0}\right)^{2}\right]^{\nu}}
$$

* NO effects on standard Λ CDM parameters (6+16 nuisance)
* A new scale Δ. Preferred value? Depends on GALACTIC MASK

$\Delta=(0.351 \pm 0.114) \times 10^{-3} \mathrm{Mpc}^{-1}$
RED : + 30-degree extended mask
$>99 \%$ confidence level

$$
\Delta^{\text {Infl }} \sim 2.4 \times 10^{12} e^{N-60} \mathrm{GeV} \sim 10^{12}-10^{14} \mathrm{GeV} \text { for } \mathrm{N} \sim 60-65
$$

(Even \& Odd) Detections of Δ

(Gruppuso, Kitazawa, Lattanzi, Mandolesi, Natoli, AS, 2017)

Case	Label	dataset	Detection level (\%)	Detection level (σ)
a	Standard	full	93.26	1.83
a	Standard	even	98.59	2.46
a	Standard	odd	52.52	0.72
b	Ext_{06}	full	92.30	1.77
b	Ext_{06}	even	98.65	2.47
b	Ext ${ }_{66}$	odd	41.03	0.54
c	Ext_{12}	full	96.41	2.10
c	Ext $_{12}$	even	99.39	2.74
c	Ext_{12}	odd	18.93	0.24
d	Ext_{18}	full	99.15	2.63
d	Ext_{18}	even	99.23	2.67
d	Ext_{18}	odd	69.80	1.03
e	Ext_{24}	full	99.32	2.71
e	Ext_{24}	even	99.05	2.59
e	Ext_{24}	odd	81.57	1.33
f	Ext_{30}	full	99.84	3.16
f	Ext_{30}	even	98.47	2.43
f	Ext_{30}	odd	94.37	1.91
g	Ext_{36}	full	98.60	2.46
g	Ext_{36}	even	96.27	2.08
g	Ext_{36}	odd	96.60	2.12

Prospects

* Δ does not affect standard $\Lambda C M B$ parameters WHAT NEXT? POLARIZATION
- Cosmic-variance limited E-mode could allow a 5-6 σ detection of Δ (or could rule it out)
- Enhanced tensor (B) mode around the scale Δ (+large-scale suppression)
* [Enhanced non-gaussianity? $\sim\left(n_{s}-1\right)$]
(Gruppuso, Kitazawa, Lattanzi, Mandolesi, Natoli, AS, 2017)

9D Dudas-Mourad Vacua

$$
\mathcal{S}=\frac{1}{2 k_{10}^{2}} \int d^{10} x \sqrt{-G}\left\{-R-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{12} e^{\frac{3-p}{2} \phi} \mathcal{H}_{3}^{2}-T e^{\frac{3}{2} \phi}+\ldots\right\}
$$

9D solution \rightarrow (INTERVAL) COMPACTIFICATION

Singularities at the ends (for the space-time geometry and for the string coupling)

$$
\begin{aligned}
\phi & =\frac{3}{4} \alpha_{O} y^{2}+\frac{1}{3} \ln \left|\alpha_{O} y^{2}\right|+\Phi_{0} \quad\left(\alpha_{O} \sim T\right) \\
d s_{O}^{2} & =\left|\alpha_{O} y^{2}\right|^{\frac{1}{18}} e^{-\alpha_{O} \frac{y^{2}}{8}} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+e^{-\frac{3}{2} \Phi_{0}}\left|\alpha_{O} y^{2}\right|^{-\frac{1}{2}} e^{-\frac{9}{8} \alpha_{O} y^{2}} d y^{2}
\end{aligned}
$$

[Applies to both $U s p(32)$ and $U(32)$, similar but more complicated results for heterotic $S O(16) \times S O(16)$]
a) string loop corrections: grow out of control for $y \rightarrow \infty$;
b) curvature corrections: similar problem near $\mathrm{y}=0$.
c) BUT: (BRANE) SUSY BREAKING induces a COMPACTIFICATION \rightarrow FINITE length $\sim \frac{1}{\sqrt{T}}$
d) FINITE 9D Planck mass and gauge coupling

Orientifold Flux Vacua with BSB

- In this setting the field equations from

$$
\mathcal{S}=\frac{1}{2 k_{10}^{2}} \int d^{10} x \sqrt{-G}\left\{-R-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{12} e^{\frac{3-p}{2} \phi} \mathcal{H}_{3}^{2}-T e^{\frac{3}{2} \phi}+\ldots\right\}
$$

reduce to

$$
\begin{aligned}
(A): T e^{\gamma_{E} \phi} & =-\frac{\beta_{E}^{(P)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
16 k^{\prime} e^{-2 C} & =\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(s)} \phi}}{(7-p)} \\
\left(A^{\prime}\right)^{2} & =k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

- (*): Dilaton Eq: constraint from positivity of L.h.s. ($\beta_{\mathrm{E}}<\mathrm{O}$ for orientifolds \& T>O, NEED H_{3} fluxes)
- Third Eq: determines for $\mathrm{k}=\mathrm{OA} \sim \mathrm{r}$, and thus AdS in Poincaré coordinates (or in other slicings for $\mathrm{k}= \pm 1$)
- WIDE REGIONS where the two couplings $\alpha^{\prime} R$ and $g_{s}=e^{\phi}$ are SMALL

Breitenlohner - Freedman Bounds

- Poìncarê coordinates:

$$
d s^{2}=R_{A d S}^{2} \frac{d z^{2}+\eta_{\mu \nu} d x^{\mu} d x^{\nu}}{z^{2}}
$$

- E.g: Klein-Gordon eq.:

$$
\begin{aligned}
& g^{M N} \nabla_{M} \nabla_{N} \Phi-\left(M R_{A d S}\right)^{2} \Phi=0 \\
& \phi(x, z)=e^{i k \cdot x} z^{\frac{d}{2}-1} \Psi(z)
\end{aligned}
$$

- Schrödinger-like:

$$
\left[\begin{array}{l}
{\left[-\frac{d^{2}}{d z^{2}}+\frac{4\left(M R_{A d S}\right)^{2}+d(d-2)}{4 z^{2}}\right] \Psi=-k^{2} \Psi} \\
\mathcal{A}=-\frac{d}{d z}+\frac{a}{z}, \quad \mathcal{A}^{\dagger}=\frac{d}{d z}+\frac{a}{z} \\
\mathcal{A}^{\dagger} \mathcal{A} \Psi=-k^{2} \Psi
\end{array}\right.
$$

- BF Bound:

$$
\left(a-\frac{1}{2}\right)^{2}=\left(M R_{A d S}\right)^{2}+\frac{(d-1)^{2}}{4} \geq 0
$$

$A d S_{3} \times S^{7}\left(\& A d S_{7} \times S^{3}\right)$ Vacua

- Basic Equation:

$$
g_{\mu \nu} A+\nabla_{\mu} \nabla_{\nu} B=0 \longrightarrow A=0, \quad B=0
$$

- Scalar Perturbations:

$$
\begin{aligned}
b_{\mu \nu} & =\sqrt{-\lambda} \epsilon_{\mu \nu \rho} \nabla^{\rho} B \\
h_{\mu \nu} & =\lambda_{\mu \nu} A \\
h_{\mu i} & =R^{2} \nabla_{\mu} \nabla_{i} D, \\
h_{i j} & =\gamma_{i j} C,
\end{aligned}
$$

- Breitenlohner-Freedman Bound: $\quad M^{2} \geq-\frac{(d-1)^{2}}{4 R_{\text {AdS }}^{2}}\lfloor$ (Breterenlohner, Freedman, 1982)
- OK for $\ell=0$:

$$
\begin{aligned}
& \square B+4\left(\frac{1}{R_{A d S}^{2}}+\frac{3}{R^{2}}\right)(\varphi+14 C)=0 \\
& \square \varphi-V_{0}^{\prime \prime} \varphi-\left(\frac{1}{R_{A d S}^{2}}+\frac{3}{R^{2}}\right)(2 \varphi+14 C)=0 \\
& \square C-C\left(\frac{7}{R_{A d S}^{2}}+\frac{9}{R^{2}}\right)-\frac{1}{2} \varphi\left(\frac{1}{R_{A d S}^{2}}+\frac{3}{R^{2}}\right)=0
\end{aligned}
$$

$A d S_{3} \times S^{7}\left(\& A d S_{7} \times S^{3}\right)$ Vacua

- $\ell \neq 0$:

$$
\begin{aligned}
R_{A d S}^{2} \mathcal{M}^{2} & =\frac{L_{3}}{3}\left(\sigma_{3}-1\right) \mathbf{1}_{3}+\left(\begin{array}{ccc}
4+3 \sigma_{3} & -\frac{7}{2} \sigma_{3} & \frac{L_{3}}{2}\left(\sigma_{3}-1\right) \\
-2 \sigma_{3} & 2 \sigma_{3}+\tau_{3} & -\frac{L_{3}}{3}\left(\sigma_{3}-1\right) \\
8 \sigma_{3} & -4 \sigma_{3} & 0
\end{array}\right) \\
\sigma_{3} & \rightarrow \frac{3}{2}, \quad \tau_{3} \rightarrow \frac{9}{2}, \quad L_{3} \rightarrow \ell(\ell+6) \\
\mathcal{M}^{2} R_{A d S}^{2} & \geq-1 ?
\end{aligned}
$$

- Breitenlohner-Freedman Bound Violated for $\ell=2,3,4$: (Gubser, Mitra, 2002)
- [Similar result for heterotic $S O(16) \times S O(16)$ for $l=1$]

$A d S_{3} \times S^{7}\left(\& A d S_{7} \times S^{3}\right)$ Vacua

$\mathrm{AdS}_{3} \times \mathrm{S}^{7}$ Orientifold Flux vacua: WEAK coupling but UNSTABLE

- Violations of Breitenlohner-Freedman bound for scalar modes
- HOWEVER: wide nearby regions of stability. From QUANTUM CORRECTIONS?
- (At least in heterotic): instabilities can be removed by simple internal projections
- STILL: Futher non-perturbative instabilities (brane decays)
(Antonelli, Basile, 2019)

Akin to Electro- (or Gravito-) static Instabilities?

Dudas-Mourad Vacua

Dudas-Mourad vacua: STABLE but STRONG COUPLING(s)

$$
d s^{2}=e^{2 \Omega(z)}\left[(1+A) d x^{\mu} d x_{\mu}+2 d x^{\mu} d z \partial_{\mu} D+(1+C) d z^{2}\right],
$$

- BUT: D can be gauged away, and then $C=-7$ A (looks familiar from Cosmology ...)

$$
A^{\prime \prime}+A^{\prime}\left(24 \Omega^{\prime}-\frac{2}{\phi^{\prime}} e^{2 \Omega} V_{\phi}\right)+A\left(m^{2}-\frac{7}{4} e^{2 \Omega} V-14 e^{2 \Omega} \Omega^{\prime} \frac{V_{\phi}}{\phi^{\prime}}\right)=0
$$

- Can turn into a Schrödinger-like form (recall the preceding BF arguments):

$$
\begin{aligned}
m^{2} \Psi & =\left(b+\mathcal{A}^{\dagger} \mathcal{A}\right) \Psi \\
b & =\frac{7}{2} e^{2 \Omega} V \frac{1}{1+\frac{9}{4} \alpha_{O} y^{2}}>0
\end{aligned}
$$

- NO tachyons in 9D \rightarrow STABILITY

COSMOLOGY : the issue is the time evolution of perturbations

- For large ηV is negligible and tensor perturbations evolve as

$$
\begin{array}{|ll}
h_{i j}^{\prime \prime}+\frac{1}{\eta} h_{i j}^{\prime}+\mathbf{k}^{2} h_{i j}=0 \\
h_{i j} & \sim A_{i j} J_{0}(k \eta)+B_{i j} Y_{0}(k \eta) \\
h_{i j} & \left.\sim \mathbf{k}^{2} \neq 0\right) \\
\end{array}
$$

NOTICE: logarithmic growth for $\mathrm{k}=\mathrm{O}$ (instability of isotropy) !!

The Climbing Scalar

More in detail:

$$
\begin{aligned}
\phi & =-\frac{3}{4} \alpha_{O} t^{2}+\frac{1}{3} \ln \left|\alpha_{O} t^{2}\right|+\Phi_{0}, \\
d s_{O}^{2} & =-e^{-\frac{3}{2} \Phi_{0}}\left|\alpha_{O} t^{2}\right|^{-\frac{1}{2}} e^{\frac{9}{8} \alpha_{O} t^{2}} d t^{2}+\left|\alpha_{O} t^{2}\right|^{\frac{1}{18}} e^{\alpha_{O} \frac{t^{2}}{8}} d \mathbf{x} \cdot d \mathbf{x} \\
d s_{O}^{2} & =e^{2 \Omega(\eta)}\left(-d \eta^{2}+d \mathbf{x} \cdot d \mathbf{x}\right), \\
\phi & =\phi(\eta) \\
d \eta & =\left|\sqrt{\alpha_{O}} t\right|^{-\frac{5}{9}} e^{-\frac{3}{4} \Phi_{0}} e^{\frac{\alpha_{O}}{2} t^{2}} d t
\end{aligned}
$$

* Exact solution in terms of the "parametric time" t : (${ }^{\prime}=$ derivative w.r.t. conformal time η)

$$
\begin{aligned}
& h_{i j}^{\prime \prime}+8 \Omega^{\prime} h_{i j}^{\prime}\left[+\mathbf{k}^{2} h_{i j}\right]=0 \\
& h_{i j}=A_{i j}+B_{i j} \log \left(\sqrt{\alpha_{O}} t\right)
\end{aligned}
$$

The Climbing Scalar

Cosmological Models Behave BETTER
a) CLIMBING SCALAR: INSTABILITY of ISOTROPY ($k=0$ only)
b) STABLE in ($D<10$) DESCENT can be driven by mild (brane-induced) potential [Lucchin-Matarrese attractor]

* COMPACTIFICATION to $\mathrm{D}<10$?

Solutions with Flux and Tension

General Lesson:

a) SPATIAL PROFILES: finite intervals $\leftarrow \rightarrow$ strong coupling at one or both ends [ALSO: Scherk-Schwarz-like extensions in intervals]
a) COSMOLOGY: better behavior (climbing), even with initial anisotropy
b) FLUXES: can remove SOME singularities induced by the tension T

Best Wishes, Bernard!

