Black Holes and Scherk-Schwarz

Julia-Fest, 16-17 December 2019

1912.xxxxx - Chris Hull, Eric Marcus, Koen Stemerdink, S.V.

[Earlier related work: Gaddam, Gnecchi, S.V., Varela, '14]

Dear Bernard,...

Cremmer, Julia and Scherk

Intro & Motivation

- We have used string theory to derive the Bekenstein-Hawking area law for black holes (Strominger, Vafa '96,...)
- These Black Holes are supersymmetric...
- And the string theories also have (high degree of) supersymmetry...
- Can we (partially) break supersymmetry?

Intro & Motivation

BPS Black Holes a la Strominger and Vafa ('96)

IIB D=10D1-D5 \checkmark T4(2,2) D=6BPS Black String \checkmark S1 \checkmark S1N=8 D=5BPS Black Hole

Intro & Motivation

BPS Black Holes a la Strominger and Vafa ('96)

$S = \frac{1}{4}A = ???$

Scherk-Schwarz

• D+1 dimensional supergravity with symmetry group G

 $\psi \to g \psi \ g \in G$

- SS ansatz: $\psi(x^{\mu},z) = \exp(Mz)\psi(x^{\mu})$
- $M \in \mathfrak{g}$ is called the mass matrix
- Monodromy: $\mathcal{M} = \exp(M)$
- Results in gauged U(1) supergravity in D dimensions

Scherk and Schwarz '79, Cremmer, Scherk and Schwarz '79,...

Scherk-Schwarz and Duality Twists

- We can twist with a general element of the U-duality group G (classified by conjugacy classes)
- Choosing inside the T-duality group, the theory at the minimum has an exact CFT description as an orbifold
- In string theory, quantization condition $G(\mathbb{R}) \rightarrow G(\mathbb{Z})$
- Twisting in the R-symmetry (partially) breaks supersymmetry

..., Dabholkar and Hull, '02

(Partial) Susy Breaking

 $SO(5) \simeq USp(4)$ Sp(n) = USp(2n)

6D to 5D Scherk-Schwarz

Twist in R-symmetry

$$SO(5)_L \times SO(5)_R \simeq USp(4)_L \times USp(4)_R$$

to break supersymmetry

$$USp(4) \rightarrow USp(2) \times USp(2)$$

Twist/mass matrix

$$M_{\rm L}^{\mathfrak{usp}(4)} = \begin{pmatrix} 0 & 0 & -m_1 & 0 \\ 0 & 0 & 0 & -m_2 \\ m_1 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 \end{pmatrix}, \qquad M_{\rm R}^{\mathfrak{usp}(4)} = \begin{pmatrix} 0 & 0 & -m_3 & 0 \\ 0 & 0 & 0 & -m_4 \\ m_3 & 0 & 0 & 0 \\ 0 & m_4 & 0 & 0 \end{pmatrix}.$$

Fields	Representation	Masses		
Scalars	(5,5)	$ \pm m_1 \pm m_2 \pm m_3 \pm m_4 $		
		$ \pm m_1 \pm m_2 $		
		$ \pm m_3 \pm m_4 $		
		0		
Vectors	(4 , 4)	$ \pm m_{1,2} \pm m_{3,4} $		
Tensors	(5 , 1)	$\left \pm m_1\pm m_2\right ,0$		
	(1 , 5)	$\left \pm m_3\pm m_4\right ,0$		
Gravitini	(4 , 1)	$ \pm m_{1,2} $		
	(1 , 4)	$ \pm m_{3,4} $		
Dilatini	(5 , 4)	$ \pm m_1 \pm m_2 \pm m_{3,4} $		
		$ \pm m_{3,4} $		
	(4 , 5)	$ \pm m_{1,2} \pm m_3 \pm m_4 $		
		$ \pm m_{1,2} $		

See also Andrianopoli, Ferrara, Lledo, '04

Partial SUSY Breaking

Patterns of susy breaking:

$$m_{1} = m_{2} = m_{3} = 0 \rightarrow N = 6$$

$$m_{1} = m_{2} = 0 \rightarrow N = 4 (2,0)$$

$$m_{1} = m_{3} = 0 \rightarrow N = 4 (1,1)$$

$$m_{3} = m_{4} = 0 \rightarrow N = 4 (0,2)$$

$$m_{4} = 0 \rightarrow N = 2 (0,1)$$

$$m_{1} = 0 \rightarrow N = 2 (1,0)$$

The three N=4 theories have the same massless spectrum, but different massive multiplets. (2,0) and (0,2) are related by parity, but parity is anomalous (more later!) Similarly for N=2.

Black Holes

	0	$-(m_1 + m_2)$	0	0	0
	$m_1 + m_2$	0	0	0	0
$M_{\rm L} =$	0	0	0	0	$-(m_1 - m_2)$,
	0	0	0	0	0
	0	0	$m_1 - m_2$	0	0)
					, ,
	0	$-(m_3 + m_4)$	0	0	0
	$m_3 + m_4$	0	0	0	0
$M_{\rm R} =$	0	0	0	0	$-(m_3-m_4)$.
	0	0	0	0	0
	0	0	$m_3 - m_4$	0	0

Black Holes

$$M_{\rm L} = \begin{pmatrix} 0 & -(m_1 + m_2) & 0 & 0 & 0 \\ m_1 + m_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -(m_1 - m_2) & 0 \\ 0 & 0 & m_1 - m_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

This twist matrix is conjugate to the previous one but DOES belong to Tduality group: hence string description.

Full string description

Two special cases:

$$m_1 = m_2 = 0$$
: $N = 4$ (0,2) and $m_3 = m_4$
 $m_3 = m_4 = 0$: $N = 4$ (2,0) and $m_1 = m_2$

Twist matrix now is part of T-duality group. These string theories can be described by asymmetric orbifolds. Similarly for all mass parameters equal, but this leads to (0,0). Perhaps this is a very interesting theory!

Both preserve F1-F5 and D1-D5 black hole system.

Black hole entropy without susy breaking

$$S_{\rm BH} = \frac{A}{4G_N^{(5)}} = 2\pi\sqrt{N_1 N_5 N_K}$$

Now integrate out chiral and self-dual fields. This yields additional corrections to Chern-Simons terms [..., Bonetti, Grimm, Hohenegger, '13]

$$\mathcal{L}_{AFF} = -\frac{1}{6} k_{AFF} A_1 \wedge F_2 \wedge F_2, \qquad \qquad \mathcal{L}_{ARR} = -\frac{1}{2} k_{ARR} A_1 \wedge \operatorname{Tr} \left(R_2 \wedge R_2 \right)$$

$$\mathcal{L}_{AFF} = -\frac{1}{6} k_{AFF} A_1 \wedge F_2 \wedge F_2, \qquad \qquad \mathcal{L}_{ARR} = -\frac{1}{2} k_{ARR} A_1 \wedge \operatorname{Tr} \left(R_2 \wedge R_2 \right)$$

Explicit one-loop calculations using sugra techniques:

• No contributions for N = 8, 6 (supersymmetry)

• N = 4:
$$k_{AFF} = 0$$

 $k_{ARR}^{(2,0)} = |k_{ARR}^{(2,0)}|$
 $k_{ARR}^{(1,1)} = 0$
 $k_{ARR}^{(0,2)} = -k_{ARR}^{(2,0)}$

$$\mathcal{L}_{AFF} = -\frac{1}{6} k_{AFF} A_1 \wedge F_2 \wedge F_2, \qquad \qquad \mathcal{L}_{ARR} = -\frac{1}{2} k_{ARR} A_1 \wedge \operatorname{Tr} \left(R_2 \wedge R_2 \right)$$

Explicit one-loop calculations using sugra techniques:

No contributions for N = 8, 6 (supersymmetry)

• N = 4:
$$k_{AFF} = 0$$

 $k_{ARR}^{(2,0)} = |k_{ARR}^{(2,0)}|$
 $k_{ARR}^{(1,1)} = 0$
 $k_{ARR}^{(0,2)} = -k_{ARR}^{(2,0)}$

We have expressions for N=2 as well in which kAFF is nonzero. String interpretation not clear though.

The additional Chern-Simons terms affect the black hole entropy [Castro, Davis, Kraus, Larsen, '07]

$$S_{\rm BH} = 2\pi \sqrt{N_1 N_5 \hat{N}_K \frac{2\left(1 + \sqrt{1 + 4\pi^2 k_{AFF} \frac{N_1 N_5}{\hat{N}_K^2}} + \frac{4\pi^2}{3} k_{AFF} \frac{N_1 N_5}{\hat{N}_K^2}\right)^2}{\left(1 + \sqrt{1 + 4\pi^2 k_{AFF} \frac{N_1 N_5}{\hat{N}_K^2}}\right)^3}$$

$$\hat{N}_K = N_K + 12\pi^2 k_{ARR}$$

Challenge for D1-D5 CFT? For N=4, (positive/negative shift in L₀?

String theory

String theory embedding discussed in Dabholkar and Hull '02.
 S⁻¹MS ∈ SO(5,5,ℤ)

• Results in four quantised twist parameters, e.g.

$$m_1 = \frac{1}{2} \left(k_1 + k_2 + k_3 + k_4 \right) \qquad k_i \in \left\{ 0, \frac{2\pi}{6}, \frac{2\pi}{4}, \frac{2\pi}{3} \right\}$$

• Quantised Chern-Simons coefficients, e.g. N = 4 (2,0):

$$k_{ARR} \in \{2, 4, 6, 8, 12, 24\}$$

Summary

- IIB on four-torus with SO(5,5) symmetry. Reduce further on S1.
- Duality twist to 5D such that black hole solutions are preserved.
- Entropy of black holes depend on twist.
- String theory: quantises twist parameters, masses and Chern-Simons coefficients.

Outlook

- What happens to the (4,4) CFT of Strominger-Vafa?
- What are the susy breaking patterns on the CFT?
- (4,2), (2,2), (4,0), (0,4), etc..?
- Calculation of the central charges and Cardy entropy formula?

Many Best Wishes Bernard...

Many Best Wishes Bernard...

PS I still don't eat cheese...

6D to 5D Scherk-Schwarz

- IIB on four-torus: 6D (2,2) supergravity with U-duality group SO(5,5). T-duality group O(4,4)
- Write in U-duality invariant manner [Cremmer, Julia, Lu, Pope, '97]
- Scalar example: 25 scalars in 10 x 10 matrix \mathcal{H}

$$\mathcal{H} \to U \mathcal{H} U^T$$

 $\mathcal{H}(x^{\mu}, z) = e^{Mz} \mathcal{H}(x^{\mu}) e^{M^T z}$

• Results in massive, charged fields

6D to 5D Scherk-Schwarz

$$e_{(6)}^{-1} \mathcal{L}_{s} = \frac{1}{8} \operatorname{Tr} \left[\partial_{\hat{\mu}} \mathcal{H}^{-1} \partial^{\hat{\mu}} \mathcal{H} \right]$$
$$\int S^{1}$$

$$e_{(5)}^{-1}\mathcal{L}_{s} = \frac{1}{8}\operatorname{Tr}\left[D_{\mu}\mathcal{H}^{-1}D^{\mu}\mathcal{H}\right] - V(\mathcal{H})$$

$$D_{\mu}\mathcal{H} = \partial_{\mu}\mathcal{H} - \mathcal{A}^{5}_{\mu}\left(\mathbb{M}\mathcal{H} + \mathcal{H}\mathbb{M}^{T}\right)$$

$$V \propto \mathrm{Tr} \left[\mathbb{M}^2 + \mathbb{M}^T \mathcal{H}^{-1} \mathbb{M} \mathcal{H} \right]$$